Sample Problems for the Tenth Quiz

- 1. (Alternative proof for Nyquist Criterion)
 - (a) Find the LTI filter design with impulse response p(t) that guarantees y(t) = x(t).

(b) Find the LTI filter design with impulse response p(t) that guarantees $y_{\delta}(t) = x_{\delta}(t)$, where $x_{\delta}(t) = \sum_{k=-\infty}^{\infty} x(nT)\delta(t-nT)$.

Solution.

- (a) Since Y(f) = X(f)P(f), we must have P(f) = 1 in order to have Y(f) = X(f).
- (b) It is clear from each block of the system that

$$\begin{cases} Y(f) = X_{\delta}(f)P(f) \\ Y_{\delta}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} Y\left(f - \frac{n}{T}\right) \end{cases}$$

Hence,

$$Y_{\delta}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{\delta} \left(f - \frac{n}{T} \right) P \left(f - \frac{n}{T} \right)$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} X_{\delta} \left(f \right) P \left(f - \frac{n}{T} \right)$$

since $X_{\delta}(f) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X \left(f - \frac{k}{T} \right)$ does not change by $\frac{n}{T}$ right shift.
$$= X_{\delta} \left(f \right) \left(\frac{1}{T} \sum_{n=-\infty}^{\infty} P \left(f - \frac{n}{T} \right) \right),$$

which implies that we must have

$$\frac{1}{T}\sum_{n=-\infty}^{\infty} P\left(f - \frac{n}{T}\right) = 1$$

in order to have $Y_{\delta}(f) = X_{\delta}(f)$.

2. Is a sampler linear? Can we find an equivalent linear time-invariant filter with impulse response a(t) such that $x_{\delta}(t) = x(t) \star a(t)$?

$$\begin{array}{c|c} x(t) & & x_{\delta}(t) \\ \hline & t = nT \text{ for integer } n \end{array} \qquad \begin{array}{c|c} x(t) & & x(t) \\ \hline & a(t) \end{array} \qquad \begin{array}{c|c} x_{\delta}(t) \\ \hline & a(t) \end{array}$$

Hint: $x_{\delta}(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT).$

Solution. Given that $x_{\delta}(t)$ and $y_{\delta}(t)$ are sampler outputs respectively for inputs x(t) and y(t), the output due to input x(t) + y(t) must be $x_{\delta}(t) + y_{\delta}(t)$; so, a sampler is a linear system.

Now suppose such a(t) exists. Then, its Fourier transform A(f) must satisfy

$$X(f)A(f) = X_{\delta}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T}\right)$$

and A(f) must be "nothing to do" with the input (i.e., its spectrum should not be "input-dependent"). However, for general X(f), we have that

$$A(f) = \frac{1}{T} \sum_{n = -\infty}^{\infty} \frac{X\left(f - \frac{n}{T}\right)}{X(f)} = \frac{1}{T} + \frac{1}{T} \sum_{n = -\infty, n \neq 0}^{\infty} \frac{X\left(f - \frac{n}{T}\right)}{X(f)}$$

We can easily construct two examples of X(f) such that the resulting A(f) are different!

Note: So, a linear system may not be represented as a LTI filter since it may be input-dependent.

3. (a) Show that the time-averaged PSD of

$$s(t) = \sum_{n = -\infty}^{\infty} a_n g(t - nT)$$

for WSS $\{a_n\}_{n=-\infty}^{\infty}$ is

$$\overline{\text{PSD}}_s(f) = |G(f)|^2 \left(\frac{1}{T} \sum_{n=-\infty}^{\infty} R_a(n) e^{-i2\pi f nT}\right)$$

where G(f) is the Fourier transform of g(t) and $R_a(n) = E[a_{n+m}a_n^*]$ is the autocorrelation function of WSS $\{a_n\}_{n=-\infty}^{\infty}$.

(b) Use (a) to find the time-averaged PSD of $x_{\delta}(t)$ and y(t) below, where $x_{\delta}(t) = \sum_{k=-\infty}^{\infty} a_k \,\delta(t-kT)$ and $\{a_n\}_{n=-\infty}^{\infty}$ WSS. Note that here p(t) is a general LTI filter and may not satisfy the Nyquist Criterion (and is possibly a design of correlative level coding).

$$\begin{array}{c|c} x_{\delta}(t) \\ \hline \\ p(t) \\ \hline \\ for integer n \end{array} \begin{array}{c} y(t) \\ y_{\delta}(t) \\ \hline \\ y_{\delta}(t) \\ \hline \\ for integer n \end{array}$$

(c) Continue from (b). We note that $y_{\delta}(t) = \sum_{n=-\infty}^{\infty} c_n \, \delta(t - nT)$, where $c_n = y(nT)$. If $c_n = a_n + a_{n-1}$ as the duo-binary correlative level coding, is $\{c_n\}_{n=-\infty}^{\infty}$ also WSS? Represent the time-averaged PSD of $y_{\delta}(t)$ in terms of that of $x_{\delta}(t)$.

Solution.

- (a) See Slides 3-64 \sim 3-65.
- (b)

$$\overline{\mathrm{PSD}}_{x_{\delta}}(f) = |\Delta(f)|^{2} \left(\frac{1}{T} \sum_{n=-\infty}^{\infty} R_{a}(n) e^{-i2\pi f nT} \right) = \frac{1}{T} \sum_{n=-\infty}^{\infty} R_{a}(n) e^{-i2\pi f nT}$$

$$\overline{\mathrm{PSD}}_{y}(f) = |P(f)|^{2} \overline{\mathrm{PSD}}_{x_{\delta}}(f) = |P(f)|^{2} \left(\frac{1}{T} \sum_{n=-\infty}^{\infty} R_{a}(n) e^{-i2\pi f nT} \right)$$

where the time-averaged PSD of y(t) can also be obtained directly from $y(t) = \sum_{n=-\infty}^{\infty} a_n p(t - nT)$ and the formula in (a).

(c) $\{c_n\}$ is the output due to WSS $\{a_n\}$ and a discrete LTI filter; so, it is surely WSS.

$$R_{c}(n) = E[c_{m+n}c_{m}^{*}]$$

= $E[(a_{m+n} + a_{m+n-1})(a_{m}^{*} + a_{m-1}^{*})]$
= $2R_{a}(n) + R_{a}(n+1) + R_{a}(n-1).$

$$\overline{\text{PSD}}_{y_{\delta}}(f) = \frac{1}{T} \sum_{n=-\infty}^{\infty} R_{c}(n) e^{-i2\pi f n T}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} (2R_{a}(n) + R_{a}(n+1) + R_{a}(n-1)) e^{-i2\pi f n T}$$

$$= 2\overline{\text{PSD}}_{x_{\delta}}(f) + \overline{\text{PSD}}_{x_{\delta}}(f) e^{i2\pi f t} + \overline{\text{PSD}}_{x_{\delta}}(f) e^{-i2\pi f t}$$

$$= \overline{\text{PSD}}_{x_{\delta}}(f) (2 + e^{i2\pi f t} + e^{-i2\pi f t})$$

$$= \overline{\text{PSD}}_{x_{\delta}}(f) (4 \cos^{2}(\pi f t))$$

$$(= \overline{\text{PSD}}_{x_{\delta}}(f) |H_{I}(f)|^{2})$$

4. From the slides, we know that the error propagation of correlative level coding can be eliminated by pre-coding. Two examples are given in our lectures, which are:

Duo-binary
$$\begin{cases} b_k = \tilde{b}_k \oplus \tilde{b}_{k-1} \\ a_k = 2\tilde{b}_k - 1 \\ c_k = a_k + a_{k-1} \end{cases}$$
$$\Rightarrow b_k \text{ can be fully determined by } c_k.$$

$$\begin{array}{l} \text{Modified Duo-binary} \begin{cases} b_k = \tilde{b}_k \oplus \tilde{b}_{k-2} \\ a_k = 2\tilde{b}_k - 1 \\ c_k = a_k - a_{k-2} \\ \Rightarrow b_k \text{ can be fully determined by } c_k. \end{array}$$

Give one pre-coding scheme for

$$\begin{cases} b_k = ??\\ a_k = 2\tilde{b}_k - 1 \qquad \Rightarrow b_k \text{ can be fully determined by } c_k.\\ c_k = a_k + 2a_{k-1} + a_{k-2} \end{cases}$$

Hint: $b_k = (\alpha \tilde{b}_k) \oplus (\beta \tilde{b}_{k-1}) \oplus (\gamma \tilde{b}_{k-2})$ for some $(\alpha, \beta, \gamma) \in \{0, 1\}^3$. There are eight possible candidates for precoding design.

Solution.

\tilde{b}_{k-2}	\tilde{b}_{k-1}	\widetilde{b}_k	a_{k-2}	a_{k-1}	a_k	c_k	b_k
0	0	0	-1	-1	-1	-4	0
0	0	1	-1	-1	1	-2	lpha
0	1	0	-1	1	-1	0	eta
0	1	1	-1	1	1	2	$eta \oplus lpha$
1	0	0	1	-1	-1	-2	γ
1	0	1	1	-1	1	0	$\gamma\opluslpha$
1	1	0	1	1	-1	2	$\gamma\opluseta$
1	1	1	1	1	1	4	$\gamma\opluseta\opluslpha$

-

Since $c_k = 0$ should be mapped to the same b_k , we have $\beta = \alpha \oplus \gamma$. By $c_k = -2$, we obtain $\alpha = \gamma$. By $c_k = 2$, we know $\gamma \oplus \beta = \beta \oplus \alpha$.

This results in $(\alpha, \beta, \gamma) = (0, 0, 0)$ or (1, 0, 1), where (0, 0, 0) obviously is not a legitimate choice.

c_k	b_k	$(\alpha, \beta, \gamma) = (1, 0, 1)$
-4	0	0
-2	lpha	1
0	eta	0
2	$lpha\opluseta$	1
-2	γ	1
0	$\gamma\opluslpha$	0
2	$\gamma\opluseta$	1
4	$\gamma\opluseta\opluslpha$	0

Accordingly, the precoding is $b_k = \tilde{b}_k \oplus \tilde{b}_{k-2}$ (and the decision rule is $b_k = 1$ if $1 \leq |c_k| < 3$, and $b_k = 0$, otherwise).