2012 Fall: The Final Exam
1. (Chapter 11)

(a) (6%) There are two kinds of convolutions in literature:

: : P-1
linear convolution Tpxly =2 0 Tn Ipn
L . P-1 P-1
N-point circular convolution xx ® I, = > ") Tnnod N * L(k—n)moa N = 21— Tn * L(k—n)moa N

where {x,} is a discrete causal filter satisfying that x, # 0 only at 0 < n < P — 1, and
“mod” stands for modulo operation. Denote

yr =apx I, and g =11 ® I

fork=0,1,..., N=1. Isy, = gg forevery k = 0,1,..., N—17 Construct a counterexample
if the answer is negative.

Hint: You may wish to compare the two convolutions at small N and P such as N = 2 and
pP=2.

(b) (6%) Follow (a) and suppose N = 5 and P = 3. For a block of data sequence of
size N (i.e., Iy, I1,...,14), the cycle prefix (CP) technique will prefix the sequence with
I_p,I piq,...,1 1 satisfying that

I'p=In_p, I pr1=IN_py1,...,11=1In1. (1)
Show that for unknown (or varying) {z, }2~! the condition y; = § for every k = 0,1,..., N—
1 holds if, and only if, CP condition (1) holds.
Hint: For unknowns xzg,z1,...,xp_1, the linear equations below are solvable for non-zeros

unknowns if, and only if, a; = as =--- =ap_1 = 0.

(
.731'a1+$2'a2+$3'a3+"‘+1’]371'CLP,1:O

.TQ'CL1+$3'CL2+“‘+(13P71'CLP72:0

Tp_9- Q] +Tp_1- Qo = 0

\ rp_1-a; =0

Note: The statement in (b) holds actually for any N and P with N > P. Thus, CP is the
one and only technique that can guarantee y;, = g for every k =0,1,..., N — 1. However,
to lower your load, I only demand the proof for a specific case of N =5 and P = 3.

(¢) (6%) Under N > P and based on the discrete Fourier transform (DFT) pair given below,

( N-1
DFT  Xp =Y ane ™% k=01,... N-1
m=0
) | N (2)
iDFT  z,, = NZXkel%ka m=0,1,...,N—1

\ k=0

prove that g = 2 ® I, for k=0,1,..., N — 1 implies Y3, = X}, - Jp for k =0,1,...,N — 1,
where Y;, = DFT{yx}, Xy = DFT{x.} and J, = DFT{I,}.
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Hint: Perform

N-—1
o ~ _opmk
Yk = Yme TN
m=0
N-1 /P-1
2 mk
= § Ty - I(m—n)modN € N
m=0 \n=0
P-1 N-1
2 mk
= Tp [(m—n)mod NE N
n=0 m=0

and remove the modulo index by performing

N—-1 n—1 N—-1
—2m ik —2 ik —2n 1k
I(mfn)mod NE No= E I(mfn)mod NE N+ E [(mfn)mod NE N

(d) (6%) Follow (c). Is yp = xp * I}, implying Yy = X}, - Jx7 Construct a counterexample if the
answer is negative.

Hint: Think of why we need to introduce CP! Also consider the case that yy # g in (a).

Solutions.

(a) Let N =2 and P = 2. Then, we have

{linear convolution Y =20 Iy + a1 Ip_q

circular convolution  gr = ¢ * Irmoa2 + 1 * L(k—1)moa2

Hence,
yo=xo-lo+wx -1y and y =z 11 +x1-1I
Yo=1x0 - lo+2x1- 11 and gy =x9- 11 +x1- I
which implies that if Iy # I_1, then yy # .
(b)
linear convolution Y =X Ip +a1 - g1+ 29 I} o
{Circular convolution  ¥r = %o * Irmoas + T1 * L(k—1)moas + T2 * L(k—2)moas

Hence, for 2 < k < 4, y = gy is always valid. So we only need to consider the cases for
0 < k <1, which gives

Yyo=xo - lo+xy-I 1 +x0- I 9g=x0-Io+x1-1s+ 22 I3 =70
yi=x0-hh+x1-lo+ay- I y=x0- L1 +a1-Lop+a2- 1y =1

We then obtain
Iy - (I,l - [4) —+ X9 - ([,2 - [3) =0
xIo - ([,1 — [4) =0

By treating {z,} as unknowns, these equations are solvable for non-zero {z,} if, and only
if

Y

I,Q = Ig and Ifl = I4.



P

n=0

1
—12m
Ty - I(m n)mod N | €

|

T3 = 3
L L))
VR

N—-1
—127r7”k
= Tn E [m n)mod N €

n=0 m=0

P-1 -1 N-—1
- Tn E ]m n+Ne_Z27r N+ E Im ne_ﬂﬂ— N

n=0 m=0

P-1 N-—1 Nk —n (ernik

— +” _ +n

— T Igle 127 § I 127

n=0 V/=N-—n

(d) Since DFT and iDFT are duality operations, subproblem (c) indicates that g, = z) & I
for k=0,1,..., N — 1 if, and only if, 17;,3 =Xy -Jp for k=0,1,..., N — 1. Together with
subproblem (a), one can infer that gy = yx for £ = 0,1,..., N — 1 may not be true; so the
answer to this question should be negative.

As for the counterexample, take N = 2 and P = 2. Also take xg =21 =Ih =1, = 1
but /_; = —1. Then

(4o =20+ I+ a1+ 11 =0 (=1
y1:$0‘11+{)j‘1-10:2 11:1
! 1
m=0 0
1
= Z yme—lQW% — Qe — _9 jl — [me—ZQﬂ'% —14e ™ =0
\ m=0
and (
Zo 1
T = 1
1
O S
m=0
1
Xl == Z $m6_22ﬂ-% = 1 + e_ZTr — 0
\ m=0




So
2=Yy#X0-Jp=4 and —-2=Y,#X;-T;=0.

(Note that if we change 7 to 1. Then, Yy and Y; become 4 and 0, respectively; so the
statement in (c¢) can be applied!)

2. (Chapter 11)

(a) (6%) An OFDM (baseband) signal can be formulated as

[e.9]

se(t) Z (Z X €T t) g(t —nT)

n=—oo

where { X} ,} are random in nature. If { X}, } are zero-mean i.i.d. both in k and n, then its
autocorrelation can be computed as:

oo Q-1
( 3 2x<>)

n=—oo k=0

o Q-1 ,
( Z ZX;mg*(t - mT)e_ﬂ”%t)]

m=—oco j=0

R, (t+T7,t) = E

Q-1 00
= o2 T Z gt +7—nT)g*(t —nT)

k=0 n=—o00

where 02 is the variance of X} ,,. Now if { X}, } remains i.i.d. both in k¥ andn but are with a
(complex-valued) mean p (i.e., E[X},] = p) and variance o2, what will its autocorrelation
become?

(b) (6%) Follow (a). Find the time-average autocorrelation function of s,(t) at u = 0, and
prove that the time-average power spectrum density is

e-2)

T
k=

2

(c) (6%) Follow (a). If
1§ X, e (=01 N -1
Ton = 77 n = U L. -
bn =N Ly Hhan€

and N > @, prove that

o N-1
Z Z . sin(mtN/T) G N=D/THYN) gy _ )
=5 sin(m(t/T — ¢/N))

Hint: Re-express {X},} in terms of {z,} using iDFT formula in (2).



(d) (6%) Continue from (d). What will be the value of sy(mT/N), where 0 < m < N — 1, if

1, 0<t<T
g(t) = 7
0, otherwise

Hint: hmtT%T %em(t(N—l)/T—M/N) =0 for ¢ % m.

Solutions.

oo Q-1
( S S v+ >)
n=—oo k=0
oo Q-1 ‘
(> ZX;mg*u—mwe—W)
7=0

m=—00 j=

o Q-1 o

- $ 8 5 Remas s ame e

n=—00 k=0 m=—o0 j=0

= |u? Zeﬂ”%Ze’%(k 2t Z Z gt +17—nT)g*(t — mT)

n=—00 M=—00

Q—l 0
102 2T Z g(t+71—nT)g"(t —nT)
k=0 n=-—00
(b)
_ 1 [r
R, (1) = T R, (t+7,t)dt
0
2L
- Tzeww 3 / (t+7—nT)g"(t — nT) dt
k=0 n=—oo
2 @— (n—1)T
o
- = 612” Z/ glu+7)g"(u) du
k=0 n=-—00
0.2 Q-1 A o0
= — emTT/ g(t+71)g*(t)dt

k=

[e=]



02 Q-1 00 © k
= 2 [Coo ([ aterne ) a
k=0 Y~ -
0_2 Q-1 00 o0 k k
= = / g (t) < / g(u)e—m(f—T)uczu) 2 (1)t gy
k=0 Y -
2 Q-1 o0 *
B ) ([
k=0
_ UQQlG(f k>2
T T
k=0
(c) Since
N-1 "
Xiw = o™ k=01,....Q-1
0=0
we obtain
oo Q-1
) = Y ( X ) gt —nT)
n=-—o00 k=0
00 ~1[N-1
_ Z ( x&ne—ﬂTrN] 6127th> g(t—TLT)
n=—oo \ k=0 L¢=0
oo N-1 N-1 .
S 3 (B0
n=—oo ¢{=0 k=0

oo N-1 1— e—zQW(E/N—t/T)N
Z Len T o (e/N—/T) g(t =nT)
——o0 =0

oo N-1 1 — et2mtN/T
n=—oo0 {=0
oo N-1 e—mtN/T _ guntN/T eV mtN/T
- Z Z Len (ewr(f/Nt/T) _ em(f/Nt/T)) (6’”(£/Nt/T)) g(t a nT)
n=—oo0 {=0

oo N-1 :
_ Z Z Zon ( —'22 sin(mtN/T) ) emrtN/T—i-ur(E/N—t/T)g(t —nT)
. 12sin(m(¢/N —t/T))

o~ N-1 .
sin(mtN/T) N/ T+t /N—amt)T
_ o T 17T 17T _ T
2. ‘Uf’"( sin(w(ﬁ/N—t/T)))e glt = nT)

sin(mtN/T')
; e n(r(t/T — (/N))

TN =D/T+/N) g (4 _ )



(d) For0<m < N —1,

: : sin(mtN/T) B
1 = i (t(N—1)/T+L/N) _
tTl%HlT s¢ (t) t%l,I,LnT E g Ty, " Snlr )T — /N e g(t —nT)

sin(mtN/T)
— 1 m E w(t(N—1)/T+L/N)
: T sin(w(t/T — K/N))6

iy SN/ T) i (H(N=1)/Tm/N)
"amrsin(n(t/T —m/N))
lim — sin(wtN/T)
o sin(mw(t/T — m/N))
) (mN/T) cos(ntN/T)

attmr (w/T) cos(m(t/T —m/N))

= Tppe™ N cos(mm)
= Nz,

:xm

_ mTm
= Tmne€

= Tmn€

. (Chapter 13)

(a) (6%) Let c(;t) = 320 oy - 6(1 — ), where 8, = 0 < fy < (3 are constants, and {a;}3_,
are independent non-negative random variables. Assume that f;f. is an integer for all i,
where f. is the carrier frequency. Find its low-pass equivalent channel response ¢, (7;1).

Note: ¢y(7;t) should be a function of carrier frequency f..
(b) (6%) Follow (a). Is ¢,(7;t) WSS in t.
(c) (6%) Follow (a). Show that delay power spectrum R.,(7; At = 0) of ¢y(7;t) is equal to

R, (T;At=0) = Z(,u] (Zm)—l—(f) (1 —B5))

7j=1

provided that E[o;] = p; and E[a?] = o2 + p?.
Hint: Here, we extend the definition of delay power spectrum to be

RCZ(T;At):/ R, (7,7 At)dT.

o0

(d) (5%) What is the (maximum) delay spread of the channel in (c)?

(e) (5%) Which category does the channel in (c) belongs to, overspread or underspread?
Hint: What is the Doppler spread of a time-invariant channel?

Solutions.



(a) From Slide 13-5,

co(T3t) = (T't) —2nfer

— Z ;- 7_ . Bz —127 feT
_ Z o B) e 12t
= Z Qi - 7— - ﬁz

(b) The answer is YES. In fact, ¢,(7;t) = co(7) is time-invariant and not a function of t. So its
mean and autocorrelation function are of course not a function of ¢; hence, they certainly
only depend on the time difference.

()

3

3
R., (T,7;At) = E ZO"" (T —B) Z o(1 — B;)

= ZZE@% 3(7 — Bi)o(r — B))

11]1

= ZZMMJ (7 — B)S(r — B;) +2057—5] (r—B;)

=1 j5=1

Hence,
R, (i At=0) = /ZRCZ(%,T;At:O)d?
= Z;Z;,WJ (1 - B;) +Za§r—ﬁj
i=1 j
= Z(NJZM1+O-> (T —8;)
(d) T = P

(e) The Doppler spread of this channel is B; = 0; hence, B,T,, = 0. The channel is an
underspread channel.

4. (Chapter 13) (6%) Suppose that the transmitter sends a single tone of 5 GHz to a receiver inside

the car as shown in the figure below. What will be the Doppler shift if the light speed is equal
to 107 times the car speed?

Hint: Doppler shift is equal to A, = lima;_,o — 5 i . = limayy0 — 5 A Where A is the wave length
of the single tone.



Transmitter

Solution. From Slides 13-35 and 13-36, the answer is 500 cos(¢) Hz.

. (Chapter 13) Suppose the channel can be molded as:

where ny is a zero-mean Gaussian vector with marginal variance o

Ty = OzBZGSg + ny,

2« is a non-negative real

number, and ¢ € [0,27). From Chapter 4, we learn that for any binary signaling (denoted by
s1¢ and s9y) transmitted over this channel, the error rate is given by

Q <\/j:> , 3

where dj = ||ae?s;p — e sy .

(a)
(b)

(c)

(6%) Denote v12 = ||s10 — S2,4||. Let Prja = 0] =1 —p and Prja = 1] = p. Assume 0 is
uniformly distributed over [0, 27). Then, find the error rate under this fading channel.

(6%) Follow (a). Now suppose 6 can be perfectly estimated at the receiver; so it can be
removed. One then adopts the maximal-ratio-combining diversity technique to improve the

error rate as follows:
L L
2
Ty = E Q;.8¢ + E QpNgg, (4)
k=1 k=1

where {ay} are i.i.d. with the same distribution defined in (a), and {n,} are i.i.d. Prove
that the error rate under this fading channel with maximal-ratio-combining diversity tech-

nique is
[ k2 L
( 477122> (k)pk(l ne

Hint: (4) can be written as r, = a%s, + 1y, where @* = Z£:1 o and 1y = Z£:1 QT .
Hence, the error rate formula in (3) can be used by replacing o with the marginal variance
of ’ng.

P, =

L
k=

0

(6%) Use the upper-bound Q(z) < %e”z/ 2 to show that the diversity technique can make
the error rate decrease exponentially with respect to L, i.e., P, can be bounded above by
Cq" for some constant C' and ¢ with 0 < ¢ < 1.

Solutions.



(b)

dis = HOJ@ZQSLg — ae’esuH = |o|712.

Hence, the error rate under this fading channel is

P = ZPr{error]a} Pr{a}

_ ZQ<,/OZZ§2> Pr{a}
- <1—p>@<0>+pcz< 477>

= %(1—p)+p-62<\/l%>-

. . . - I -
For given {ay}, the marginal variance of n, = Y ,_, ajo® = G*c?; hence, the error rate

2
d12

m), where with maximal-ratio-combining diversity

under given {ay} is equal to @ <

technique, djy = a*y12. In other words, the error rate under given {ay} is equal to

0 5447%2 ) 5‘27%2
40202 402 |

Now Pr[a? = k] = (7)p*(1 — p)L=*. Hence, the error rate of this fading channel with
maximal-ratio-combining diversity technique is

L
P, = ZPr{error|&2}Pr{5z2}

a?=0

= ;@ (\/%) (i)pk(l -t

1 b (L
P < 256 802 1 p*(1—p)
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