Digital Communications
Chapter 12 Spread Spectrum Signals for Digital Communications

Po-Ning Chen, Professor

Institute of Communications Engineering
National Chiao-Tung University, Taiwan
12.1 Model of spread spectrum digital communications system
What is “spread spectrum communications?”

- A rough definition: The signal spectrum is wider than “necessary,” i.e., $1/T$.

Recollection: Sampling theorem

- A signal of (baseband or single-sided) bandwidth W_{base} can be reconstructed from its samples taken at the Nyquist rate ($= 2W_{\text{base}}$ samples/second) using the interpolation formula

$$s(t) = \sum_{n=-\infty}^{\infty} s\left(\frac{n}{2W_{\text{base}}}\right) \text{sinc}\left(2W_{\text{base}}\left(t - \frac{n}{2W_{\text{base}}}\right)\right)$$

Thus, $T = \frac{1}{2W_{\text{base}}}$.
However, for a signal that consumes $W = W_{\text{pass}} = 2W_{\text{base}}$ Hz bandwidth after upconversion, we should put $T = \frac{1}{W}$.

Thus, $T = \frac{1}{W}$ or $W = \frac{1}{T}$.
Since we have spectrum wider than “necessary,” we have extra spectrum to make the system more “robust.”

\[
\begin{align*}
(digital \ information) \ldots \overline{0110} \\
\text{where} \quad \overline{0} = (1100011) \\
\overline{1} = (0011100).
\end{align*}
\]

Subdivision in time: \(W = \frac{1}{T_c} \) and \(\frac{T_b}{T_c} = 7 \)
Applications of spread spectrum technique

- Channels with power constraint
 - E.g., power constraint on unlicensed frequency band
- Channels with severe levels of interference
 - Interference from other users or applications
 - Self-interference due to multi-path propagation
- Channels with possible interception
 - Privacy

Features of spread spectrum technology

- Redundant codes (anti-interference)
- Pseudo-randomness (anti-interception from jammers)
 - Or anti-interference in the sense of “not to interfere others”
Usage of pseudo-random patterns

- **Synchronization**
 - Achieved by a fixed pseudo-random bit pattern
- The interference (from other users) may be characterized as an equivalent additive white noise.
Two different interferences (from others)

- **Narrow-band interference**

- **Broadband interference**
Two types of modulations are majorly considered in this subject.

- **PSK**
 - This is mostly used in direct sequence spread spectrum (DSSS), abbreviated as DS-PSK.
 - Note that some also use MSK in DSSS, abbreviated as DS-MSK.

- **FSK**
 - This is mostly used in frequency-hopped spread spectrum (FHSS).
 - The FHSS will not be introduced in our lectures.
12.2 Direct sequence spread spectrum signals
A simple spread spectrum system

- Chip interval: \(T_c = \frac{1}{W} \)
- BPSK is applied for each chip interval.
 - Bandwidth expansion factor \(B_e = \frac{W}{R} = \frac{1/T_c}{1/T_b} = \frac{T_b}{T_c} \)
 - Number of chips per information bit \(L_c = \frac{T_b}{T_c} \)
In practice, the spread spectrum system often consists of an encoder and a modulo-2 adder.

- **Encoder**: Encode the original information bits (in a pre-specified block) to channel code bits, say \((7, 3)\) linear block code.

- **Modulo-2 adder**: Directly alter the coded bits by modulo-2 addition with the PN sequences.
Example

1) Choose $T_c = 1$ ms, $T_{ib} = 14$ ms and $T_{cb} = 7$ ms,

where

\[
\begin{align*}
T_c & \text{ length of a chip} \\
T_{ib} & \text{ length of an information bit} \\
T_{cb} & \text{ length of a code bit}
\end{align*}
\]

2) Use $(6,3)$ linear block code (3 information bits \rightarrow 6 code bits)

\[
\begin{bmatrix}
100 \\
010 \\
001 \\
100 \\
010 \\
001
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{bmatrix}
\]

(generator matrix) (info bits) = (code bits)
3) Use the repetition code for chip generation:

\[
\begin{align*}
\text{code bit 0} & \rightarrow 0000000 \\
\text{code bit 1} & \rightarrow 1111111
\end{align*}
\]

\[
\Rightarrow L_c = \frac{T_{ib}}{T_c} = 14
\]

4) XOR with the PN sequence:
How about we combine Step 2) and Step 3)?

2&3) Use \((n = 6 \times 7, k = 3 \times 1)\) linear block code (3 information bits \(\rightarrow\) 42 code bits)

\[\begin{align*}
\text{Information 001} & \rightarrow \text{Code 001001} \\
\text{Chips for information messages} & \rightarrow \text{XOR} \rightarrow \text{True BPSK transmission}
\end{align*}\]
\[a_i = b_i \oplus c_i, \quad i = 0, \ldots, n - 1 \text{ and each } a_i \text{ is BPSK-transmitted.} \]
Let \(g(t) \) be the baseband pulse shape of duration \(T_c \). Notably, we drop the subscript \(\ell \) for lowpass equivalent signals in this chapter for convenience.

\[
g_i(t) = \begin{cases}
g(t - iT_c) & \text{if } a_i = 0 \\
-g(t - iT_c) & \text{if } a_i = 1
\end{cases} \quad \text{for } i = 0, 1, \ldots, n - 1
\]

Then

\[
g_i(t) = (1 - 2a_i)g(t - iT_c) = [1 - 2(b_i \oplus c_{m,i})]g(t - iT_c)
\]

\[
= [(1 - 2b_i)p(t - iT_c)] \times [(1 - 2c_{m,i})g(t - iT_c)]
\]

or \([(2b_i - 1)p(t - iT_c)] \times [(2c_{m,i} - 1)g(t - iT_c)]\]

\[
= p_i(t) \times c_{m,i}(t)
\]

where \(p(t) \) = rectangular pulse of height 1 and duration \(T_c \).
Consequently,\n\[
\text{channel symbol } g_s(t) = \sum_{i=0}^{n-1} g_i(t) \\
= \sum_{i=0}^{n-1} p_i(t) c_{m,i}(t) \\
= \left(\sum_{i=0}^{n-1} p_i(t) \right) \left(\sum_{i=0}^{n-1} c_{m,i}(t) \right) \\
= p_{PN}(t) \times c_m(t) \quad \text{where } m = 1, 2, \ldots, M
\]
For $iT_c \leq t < (i + 1) T_c$,

$$r_i(t) = p_i(t) c_{m,i}(t) + z(t)$$

where $z(t)$ is the interference introduced mainly by other users and also by background noise.

Since for $iT_c \leq t < (i + 1) T_c$,

$$p_i(t) \times p_i(t) = [(2b_i - 1)p(t - iT_c)] \times [(2b_i - 1)p(t - iT_c)]$$

$$= 1$$

we have

$$c_{m,i}(t) = [p_i(t) c_{m,i}(t)] \times p_i(t)$$

$$= [r_i(t) - z(t)] \times p_i(t)$$

$$= r_i(t) \times p_i(t) - z(t) \times p_i(t)$$

Conclusion: The estimator $\hat{c}_{m,i}(t)$ can be obtained from $r_i(t) \times p_i(t)$ if the channel is interference free.
DSSS demodulator

In this figure, we drop subscript m for $c_{m,i}$ for convenience.
\[y_i = \text{Re} \left[\int_0^{T_c} \left[(2c_{m,i} - 1)g_i(t) + (2b_i - 1)z(t) \right] \times g_i^*(t) \, dt \right] \]

\[= (2c_{m,i} - 1)\text{Re} \left[\langle g_i(t), g_i(t) \rangle \right] + (2b_i - 1)\text{Re} \left[\langle z(t), g_i(t) \rangle \right] \]

\[= (2c_{m,i} - 1)2\mathcal{E}_c + (2b_i - 1)\nu_i \]

where \(\nu_i = \text{Re} \left[\langle z(t), g_i(t) \rangle \right] \).

Recall that Slide 2-24 has derived:

\[\langle x(t), y(t) \rangle = \frac{1}{2} \text{Re} \left\{ \langle x_\ell(t), y_\ell(t) \rangle \right\} . \]

or

\[\mathcal{E}_c = \langle g_{\text{passband}}(t), g_{\text{passband}}(t) \rangle = \frac{1}{2} \text{Re} \left\{ \langle g(t), g(t) \rangle \right\} = \frac{1}{2} \langle g(t), g(t) \rangle \]
\[y_i = (2c_{m,i} - 1)2\mathcal{E}_c + (2b_i - 1)\nu_i \]

Assumptions:

- \(z(t) \) is a baseband interference (hence, complex).
- \(z(t) \) is a (WSS) broadband interference, i.e., PSD of \(z(t) \) is
 \[S_z(f) = 2J_0 \text{ for } |f| \leq \frac{W}{2}. \]
- \(z(t) \) Gaussian
- \((2b_i - 1) \) is known to Rx
\[
\hat{m} = \arg \min_{1 \leq m \leq M} \| y - 2\mathcal{E}_c(2c_m - 1) \|^2 \\
= \arg \max_{1 \leq m \leq M} \langle y, 2\mathcal{E}_c(2c_m - 1) \rangle \text{ since } \|2c_m - 1\|^2 \text{ constant} \\
= \arg \max_{1 \leq m \leq M} 2\mathcal{E}_c \sum_{i=1}^{n} (2c_{m,i} - 1)y_i \\
= \arg \max_{1 \leq m \leq M} \sum_{i=1}^{n} (2c_{m,i} - 1)y_i
\]

Suppose

- linear code is employed, and
- the transmitted codeword is the all-zero codeword (i.e., \(c_{1,i}\)).

\[
\hat{m} = \arg \max_{1 \leq m \leq M} \sum_{i=1}^{n} (2c_{m,i} - 1)[(2c_{1,i} - 1)2\mathcal{E}_c + (2b_i - 1)\nu_i]
\]
\[\Pr[\text{error}] = \Pr[\hat{m} \neq 1]\]

\[
\sum_{i=1}^{n} (2 \, c_{1,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{1,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
< \max_{2 \leq m \leq M} \sum_{i=1}^{n} (2c_{m,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{m,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{1,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{m,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
< \max_{2 \leq m \leq M} \left[-2\mathcal{E}_c \sum_{i=1}^{n} (2c_{m,i} - 1) + \sum_{i=1}^{n} (2c_{m,i} - 1)(2b_i - 1) \nu_i \right] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{m,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
= \Pr \left[\sum_{i=1}^{n} (2 \, c_{m,i} - 1) [(2 \, c_{1,i} - 1) 2\mathcal{E}_c + (2b_i - 1) \nu_i] = 0 \right] \\
= \Pr \left[\min_{2 \leq m \leq M} \left(2\mathcal{E}_c w_m - \sum_{i=1}^{n} c_{m,i} (2b_i - 1) \nu_i \right) < 0 \right]
\]

where \(w_m\) is the number of 1’s in codeword \(m\).
Let \(R_m = 2\mathcal{E}_c w_m - \sum_{i=1}^{n} c_{m,i} (2b_i - 1) \nu_i \).

Note that \(R_m \) given \(b \) is Gaussian with

mean \(\mathbb{E}[R_m|b] = 2\mathcal{E}_c w_m \) and variance \(\text{Var}[R_m|b] = w_m \mathbb{E}[\nu_i^2] \).

We have the union bound:

\[
\Pr \left\{ \mathcal{N} \left(m, \sigma^2 \right) < r \right\} = Q \left(\frac{m-r}{\sigma} \right)
\]

\[
\Pr[\text{error}|b] = \Pr \left[\min_{2 \leq m \leq M} R_m < 0 \bigg| b \right]
\leq \sum_{m=2}^{M} \Pr \left[R_m < 0 \bigg| b \right] = \sum_{m=2}^{M} Q \left(\frac{2\mathcal{E}_c w_m}{\sqrt{w_m \mathbb{E}[\nu_i^2]}} \right)
\]

Since the upper bound has nothing to do with \(b \), we have

\[
\Pr[\text{error}] = \sum_{b} \Pr(b) \Pr[\text{error}|b] \leq \sum_{m=2}^{M} Q \left(\frac{2\mathcal{E}_c w_m}{\sqrt{w_m \mathbb{E}[\nu_i^2]}} \right).
\]
\[\nu_i = \text{Re} \left[\langle z(t), g_i(t) \rangle \right] \]
\[= \text{Re} \left[\int_{iT_c}^{(i+1)T_c} z(t) g^*(t - iT_c) dt \right] \]
\[\overset{d}{=} \text{Re} \left[\int_0^{T_c} z(t) g^*(t) dt \right] = \text{Re} [\nu_i + \nu \hat{\nu}_i] \]

where “\(\overset{d}{=} \)” means “equality in distribution.”

Assumption: \(\nu_i \) and \(\hat{\nu}_i \) are zero mean and uncorrelated.

\[
\mathbb{E}[\nu_i^2] = \frac{1}{2} \mathbb{E} \left[|\nu_i + \nu \hat{\nu}_i|^2 \right] = \frac{1}{2} \mathbb{E} \left[\left| \int_0^{T_c} z(t) g^*(t) dt \right|^2 \right]
\]
\[= \frac{1}{2} \int_0^{T_c} \int_0^{T_c} \mathbb{E}[z(t)z^*(s)]g^*(t)g(s)dtds \]
\[= \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_z(t-s)g^*(t)g(s)dtds \]
\[\mathbb{E}[|\nu_i + \nu \hat{\nu}_i|^2] = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(s) R_z(t - s) ds \right) g^*(t) dt \]
\[= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} G(f) S_z(f) e^{i2\pi ft} df \right) g^*(t) dt \]
\[= \int_{-\infty}^{\infty} |G(f)|^2 S_z(f) df \]

\[\Rightarrow \mathbb{E}[\nu_i^2] = \frac{1}{2} \int_{-\infty}^{\infty} |G(f)|^2 S_z(f) df \]
\[= J_0 \int_{-W/2}^{W/2} |G(f)|^2 df \]
\[\approx 2J_0 E_c \]
\[\text{Pr[error]} \leq \sum_{m=2}^{M} Q\left(\frac{2\mathcal{E}_c w_m}{\sqrt{2w_m\mathcal{E}_c J_0}} \right) \]

\[= \sum_{m=2}^{M} Q\left(\sqrt{\frac{2\mathcal{E}_c w_m}{J_0}} \right) \]

\[= \sum_{m=2}^{M} Q\left(\sqrt{\frac{2(k/n)\mathcal{E}_b w_m}{J_0}} \right) \]

\[= \sum_{m=2}^{M} Q\left(\sqrt{2R_c \gamma_b w_m} \right) \]

where

- \(R_c = k/n \) code rate
- \(\gamma_b = \mathcal{E}_b/J_0 \) signal-to-interference ratio per info bit
How about \(z(t) \) being narrowband interference?

Assumptions:

- \(z(t) \) is a **baseband** interference (hence, complex).
- \(z(t) \) is a (WSS) **narrowband** interference (around zero freq), i.e., PSD of \(z(t) \) is

\[
S_z(f) = \begin{cases}
\frac{J_{av}}{W_1} = 2J_0 \left(\frac{W}{W_1} \right), & \text{for } |f| \leq \frac{W_1}{2} \\
0, & \text{otherwise}
\end{cases}
\]

where \(J_{av} = 2WJ_0 \).
All the derivations remain unchanged except

\[
\mathbb{E}[\nu_i^2] = \frac{1}{2} \int_{-\infty}^{\infty} |G(f)|^2 S_z(f) df \\
= \frac{J_{av}}{2W_1} \int_{-W_1/2}^{W_1/2} |G(f)|^2 df
\]

The value of \(\mathbb{E}[\nu_i^2] \) hence depends on the spectra of \(g(t) \) and the location of the narrowband jammer.
Rectangular pulse and its energy density spectrum.

\[
\mathbb{E}[\nu_i^2] = \frac{J_{\text{av}}}{2W_1} \int_{-W_1/2}^{W_1/2} |G(f)|^2 df = \frac{J_{\text{av}}E_c}{W_1} \int_{-\beta/2}^{\beta/2} \text{sinc}^2(x) dx
\]

\[
\leq \frac{J_{\text{av}}E_c}{W_1} \beta = J_{\text{av}}E_c T_c = 2J_0E_c
\]

where we use \(x = fT_c \) and \(\beta = W_1 T_c = \frac{W_1}{W} \) in the derivation.
\[
\int_{-\beta/2}^{\beta/2} \text{sinc}^2(x) \, dx
\]
How about $z(t)$ being CW jammer?

Assumptions:

- $z(t)$ is a CW (continuous wave) interference (hence, complex).
- $z(t)$ is a (WSS) CW (continuous wave) interference, i.e., PSD of $z(t)$ is

$$S_z(f) = J_{av} \delta(f)$$

\[
\mathbb{E}[\nu_i^2] = \frac{1}{2} \int_{-\infty}^{\infty} |G(f)|^2 S_z(f) \, df
\]

\[
= \frac{J_{av}}{2} |G(0)|^2 = 2J_0 \mathcal{E}_c \text{ for Example 12.2-1}
\]

where $G(0) = \sqrt{2\mathcal{E}_c T_c}$ (and $J_{av} = 2J_0 W$ and $WT_c = 1$).
From the above discussion, we learn that

- Under narrowband jammer, the DSSS performance depends on the shape of $g(t)$.

- For example (Example 12.2-2), if $g(t) = \sqrt{\frac{4\varepsilon_c}{T_c}} \sin\left(\frac{\pi t}{T_c}\right)$ for $0 \leq t < T_c$, then $G(0) = \int_{-\infty}^{\infty} g(t) \, dt = \frac{4}{\pi} \sqrt{\varepsilon_c \gamma_b} T_c$ and

$$\text{Pr}[\text{error}] \leq \sum_{m=2}^{M} Q\left(\sqrt{\frac{\pi^2}{4} R_c \gamma_b w_m}\right)$$

$$= \sum_{m=2}^{M} Q\left(\sqrt{(2.4674) R_c \gamma_b w_m}\right)$$

The error bound for one half cycle sinusoidal $g(t)$ is about 0.9dB better than that of rectangular $g(t)$.
Alternative union bound

Since \(J_{av} = 2J_0 W = 2J_0 / T_c \) and \(P_{av} = \frac{\mathcal{E}_b}{T_b} \),

\[
\gamma_b = \frac{\mathcal{E}_b}{J_0} = \frac{P_{av} T_b}{J_{av} T_c / 2} = \frac{2L_c}{J_{av} / P_{av}}
\]

\[
\text{Pr}[\text{error}] \leq \sum_{m=2}^{M} Q \left(\sqrt{2R_c \gamma_b w_m} \right) = \sum_{m=2}^{M} Q \left(\sqrt{4 \frac{L_c R_c w_m}{J_{av} / P_{av}}} \right)
\]

\[
\leq (M - 1) Q \left(\sqrt{4 \frac{L_c}{J_{av} / P_{av}}} \min_{2 \leq m \leq M} R_c w_m \right)
\]

where
\[
\begin{aligned}
& \frac{J_{av}}{P_{av}} \quad \text{Jamming-to-signal power ratio} \\
& L_c \quad \text{Processing gain} \\
& \min_{2 \leq m \leq M} R_c w_m \quad \text{Coding gain (Recall } w_1 = 0)
\end{aligned}
\]
Interpretation

- **Processing gain:**
 - Theoretically, it is the number of chips per information bit, which equals the bandwidth expansion factor B_e.
 - Practically, it is the gain obtained via the uncoded DSSS system (e.g., uncoded BPSK DSSS) in comparison with the non-DSSS system (e.g., BPSK $Q(\sqrt{2\gamma_b})$).
 - So, it is the advantage gained over the jammer by the processing of spreading the bandwidth of the transmitted signal.

![Diagram](image-url)
Coding gain

- It is the advantage gained over the jammer by a proper code design.

Example. Uncoded DSSS: Assume we use \((n,1)\) code. Then,

\[
R_c = \frac{1}{n}, \quad M = 2^1 = 2, \quad w_1 = 0, \quad w_2 = n.
\]

Hence, coding gain = \(\min_{2 \leq m \leq M} R_c w_m = \frac{1}{n} n = 1 = 0 \text{ dB.}\)

Definition: Jamming margin

- The largest *jamming-to-signal power ratio* that achieves the specified performance (i.e., error rate) under fixed processing gain and coding gain.
Example 12.2-3

Problem: Find the jamming margin to achieve error rate 10^{-6} with $L_c = 1000$ and uncoded DSSS.

For $M = 2$ (uncoded DSSS), the union bound is equal to the exact error.

Answer:

$$\Pr[\text{error}] = Q\left(\sqrt{4 \frac{L_c}{J_{av}/P_{av}} R_c w_2}\right) = Q\left(\sqrt{4 \frac{1000}{J_{av}/P_{av}}}\right) \leq 10^{-6}$$

where $R_c = 1/n$ and $w_2 = n$.

Then, $J_{av}/P_{av} = 22.5$ dB. □
Example 12.2-3 (revisited)

Problem: Given that $\gamma_b = 10.5$ dB satisfies $Q(\sqrt{2\gamma_b}) = 10^{-6}$, find the jamming margin to achieve error rate 10^{-6} with $L_c = 1000$ and uncoded DSSS.

Answer:

$$\Pr[\text{error}] = Q\left(\sqrt{4 \frac{L_c}{J_{av}/P_{av}} \min_{2 \leq m \leq M} R_c w_m}\right) = 10^{-6}$$

Then,

$$2 \frac{L_c}{J_{av}/P_{av}} \min_{2 \leq m \leq M} R_c w_m = 10.5 \text{ dB}$$

or equivalently,

$$10 \log_{10}(2) \text{ dB} + L_c \text{ dB} + \min_{2 \leq m \leq M} R_c w_m \text{ dB} - \left(J_{av}/P_{av}\right) \text{ dB} = 10.5 \text{ dB}.$$

Thus,

$$3 \text{ dB} + 30 \text{ dB} + 0 \text{ dB} - \left(J_{av}/P_{av}\right) \text{ dB} = 10.5 \text{ dB} \Rightarrow \left(J_{av}/P_{av}\right) \text{ dB} = 22.5 \text{ dB}.$$
Spectrum analysis

We now demonstrate why it is named spread spectrum system!
Assume the uncoded DSSS system, where all-zero and all-one
codes are used.
Then
\[
 g_s(t) = p_{PN}(t) \times c(t) + z(t)
\]

where
\[
 c(t) = \sum_{n=-\infty}^{\infty} l_n s(t - nT_b)
\]
with
\[
 s(t) = \begin{cases}
 g(t \mod T_c) & 0 \leq t < T_b \\
 0 & \text{otherwise}
 \end{cases}
\]
and
\[
 \{l_n \in \{\pm 1\}\}_{n=-\infty}^{\infty}
\]
zero-mean i.i.d.

From Slide 3-117,
\[
 \bar{S}_c(f) = \frac{1}{T_b} S_l(f)|S(f)|^2 = \frac{1}{T_b} |S(f)|^2
\]
where
\[
 S_l(f) = \sum_{k=-\infty}^{\infty} R_l(k) e^{-j2\pi kfT_b} = 1.
\]
Assume $g(t)$ rectangular pulse of height $1/\sqrt{T_b}$ and duration T_c (hence, $\int_0^{T_b} s^2(t) \, dt = 1$). Then (cf. Slide 12-31 by replacing T_b with T_c and letting $E = 1/2$),

$$\tilde{S}_c(f) = \frac{1}{T_b} \left(T_b \text{sinc}^2(T_b f) \right) = \text{sinc}^2(T_b f)$$

Similarly,

$$p_{PN}(t)c(t) = \sum_{i=-\infty}^{\infty} (2b_i - 1)p(t - iT_c)I_{[i/n]}s(t - [i/n]T_b)$$

$$\overset{d}{=} \sqrt{\frac{T_c}{T_b}} \sum_{i=-\infty}^{\infty} (2b_i - 1) \frac{1}{\sqrt{T_c}} p(t - iT_c)$$

where here $\{2b_i - 1\}_{i=1}^{\infty}$ and $\{(2b_i - 1)I_{[i/n]}\}_{i=1}^{\infty}$ actually have the same distribution. Then from Slide 3-117,

$$\tilde{S}_{p\times c}(f) = \frac{1}{T_c} \left| \sqrt{\frac{T_c}{T_b}} \right|^2 \left| \frac{1}{\sqrt{T_c}} P(f) \right|^2 = \frac{1}{T_b} \left(T_c \text{sinc}^2(T_c f) \right) = \frac{1}{L_c} \text{sinc}^2(T_c f)$$
\[\bar{S}_c(f) = \text{sinc}^2(T_b f) \]

\[\bar{S}_{p\times c}(f) = \frac{1}{L_c} \text{sinc}^2(T_c f) \]
Recovered symbol at the receiver end:

\[p_{\text{PN}}(t)g_s(t) = p_{\text{PN}}^2(t) \times c(t) + p_{\text{PN}}(t)z(t) = c(t) + p_{\text{PN}}(t)z(t) \]

This indicates that for WSS \(z(t) \), the PSD of the new noise \(p_{\text{PN}}(t)z(t) \) is:

\[
\overline{S}_{p \times z}(f) = \overline{S}_p(f) \ast S_z(f) \\
= \int_{-\infty}^{\infty} \overline{S}_p(s)S_z(f-s)ds = 2J_0 \int_{-\infty}^{\infty} \overline{S}_p(s)ds \\
= 2J_0 \int_{-\infty}^{\infty} \frac{1}{T_c} |P(s)|^2 ds = 2J_0 \int_{-\infty}^{\infty} T_c \text{sinc}^2 (T_c s) ds \\
= 2J_0
\]

where for simplicity we let \(S_z(f) = 2J_0 \) for \(f \in \mathbb{R} \).
\[\bar{S}_c(f) = \text{sinc}^2(T_b f) \]

\[\bar{S}_{p \times c}(f) = \frac{1}{L_c} \text{sinc}^2(T_c f) \]
Summary

- Multiplication of $p_{PN}(t) = \text{spreading the power over the bandwidth of } p_{PN}(t) \text{ (so that the transmitted signal could be “hidden” under the broadband interference.)}$
- Multiplication twice of $p_{PN}(t)$ recovers the original signal.
- The spreading fraction is approximately equal to the processing gain.

- **Modulator:** Transmit $p_{PN}(t)c(t)$
- **Demodulator:** Based on $r(t)p_{PN}(t) = c(t) + z(t)p_{PN}(t)$
Further performance enhancement by coding

Coding gain = \(\min_{2 \leq m \leq M} R_c w_m \) (Recall \(w_1 = 0 \))

Use \((n_1, k)\) code as the outer code, and \((n_2, 1)\) repetition code as the inner code, where \(n = n_1 n_2\).

Then

\[
\text{Coding gain} = \min_{2 \leq m \leq M} R_c w_m \\
= \min_{2 \leq m \leq M} \frac{k}{n_1 n_2} n_2 w_m^{(out)} \\
= \min_{2 \leq m \leq M} R_c^{(out)} w_m^{(out)}
\]

The use of the inner code here is to align the length of the outer code \(n_1\) to the length of the PN sequence \(n\).
Since the inner code is the binary repetition code, the bit error rate p of the outer code is the symbol error rate of the inner code, where under broadband interference,

$$p = Q\left(\sqrt{2R_{c}^{(in)}\gamma_{b}^{(in)}w_{2}^{(in)}}\right)$$

For $M = 2$, we have “equality”, not “≤.”

$$= Q\left(\sqrt{2\frac{1}{n_{2}}\frac{n_{2}\varepsilon_{c}}{J_{0}}n_{2}}\right) = Q\left(\sqrt{2\frac{1}{n_{2}}\frac{n_{2}(k/n)\varepsilon_{b}}{J_{0}}n_{2}}\right)$$

$$= Q\left(\sqrt{2\gamma_{b}R_{c}^{(out)}}\right) = Q\left(\sqrt{2\frac{2L_{c}}{J_{av}/P_{av}}R_{c}^{(out)}}\right). \text{ (cf. Slide 12-35)}$$

Then the symbol error rate of the entire system satisfies

$$P_{e} \leq \sum_{m=t+1}^{n_{1}} \binom{n_{1}}{m} p^{m}(1 - p)^{n_{1} - m} \leq \sum_{m=2}^{2^{k}} \left[4p(1 - p)\right]^{w_{m}/2}$$

Chernoff bound

where $t = \lfloor(d_{\text{min}} - 1)/2\rfloor$ and d_{min} is the minimum Hamming distance among outer codeword pairs.
Golay (24, 12) (outer) code

Example. Use Golay (24, 12) outer code and set $L_c = 100$.

- We need to first determine n_2 based on $n_1 = 24$.

\[12 T_b = n T_c = n_1 n_2 T_c = 24 n_2 T_c\]

\[\Rightarrow n_2 = \frac{12 T_b}{24 T_c} = \frac{1}{2} L_c = \frac{1}{2} 100 = 50.\]

- Then $p = Q \left(\sqrt{2 \frac{2 \cdot 100}{J_{av}/P_{av}} \frac{12}{24}} \right) = Q \left(\sqrt{\frac{200}{J_{av}/P_{av}}} \right)$.

\[
P_e \leq \sum_{m=4}^{24} \binom{24}{m} p^m (1 - p)^{24-m}
\]

\[
\leq 759[4p(1 - p)]^4 + 2576[4p(1 - p)]^6 + 759[4p(1 - p)]^8 + [4p(1 - p)]^{12}.
\]
Golay (24, 12) code

<table>
<thead>
<tr>
<th>Weight</th>
<th>number of codewords</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>759</td>
</tr>
<tr>
<td>12</td>
<td>2576</td>
</tr>
<tr>
<td>16</td>
<td>759</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>
The performance usually improves 3 dB by using soft-decision.
Shift-10dB due to processing gain

Shift-10dB due to processing gain
12.2-2 Some applications of DS spread spectrum signals
If each user has its own PN sequence (with good properties), then many DSSS signals are allowed to occupy the same channel bandwidth.

\[r(t) = p^{(1)}(t)c^{(1)}(t) + p^{(2)}(t)c^{(2)}(t) + \cdots + p^{(N_u)}(t)c^{(N_u)}(t) + z(t) \]

\[\Rightarrow p^{(1)}(t) \cdot r(t) = c^{(1)}(t) + p^{(1)}(t) \cdot \tilde{z}(t) \]

How to determine the number of users (capacity)?

- Each user is a broadband interference with power \(P_{av} \)
 (cf. Slide 12-8)

\[\frac{P_{av}}{J_{av}} = \frac{P_{av}}{(N_u - 1)P_{av}} = \frac{1}{N_u - 1}. \]

By this, we can obtain for \(L_c = 100 \) and Golay \((24, 12)\) outer code and \(P_e \leq 10^{-6}, \quad N_u = 41 \).

(For details, see (12.2-48) in text.)
12.2-3 Effect of pulsed interference on DS spread spectrum systems
Types of interferences

- CW jammer $S_z(f) = J_{av}\delta(f)$

- Broadband interference $S_z(f) = 2J_0$ for $|f| \leq W/2$

- Pulsed interference

$$z_p(t) = z'(t)\ell(t)$$

where $z'(t)$ is a broadband interference with $S_{z'}(f) = S_z(f)/\alpha$ for some $0 < \alpha \leq 1$ and $\ell(t)$ is a 0-1-valued random pulse of duration T_b, which equals 1 with probability α.
Hence, for uncoded DSSS (no coding gain),

- when $\ell(t) = 0$, the system is error free,
- when $\ell(t) = 1$, the system suffers broadband interference with

\[
\Pr[\text{error}] = Q\left(\sqrt{4 \frac{L_c}{(J_{av}/\alpha)/P_{av}}}\right) = Q\left(\sqrt{4 \frac{(W/R)}{(2J_0 W/\alpha)/(\mathcal{E}_b R)}}\right) = Q\left(\sqrt{2\alpha \frac{\mathcal{E}_b}{J_0}}\right)
\]
The system error under pulsed interference is

\[P_e(\alpha) = (1 - \alpha) \cdot 0 + \alpha Q\left(\sqrt{2\alpha \frac{E_b}{J_0}}\right) = \alpha Q\left(\sqrt{2\alpha \frac{E_b}{J_0}}\right). \]

What is the \(\alpha \) that \textbf{maximizes} \(P_e \) from an attacker’s standpoint?

\[\frac{dP_e(\alpha)}{d\alpha} = 0 \Rightarrow \alpha^* = \begin{cases} \frac{0.71}{E_b/J_0} & \text{if } E_b/J_0 \geq 0.71 \approx -1.49\text{dB} \\ 1 & \text{if } E_b/J_0 < 0.71 \end{cases} \]

and

\[P_e(\alpha^*) \begin{cases} \approx \frac{0.083}{E_b/J_0} & \text{if } E_b/J_0 \geq 0.71 \\ = Q\left(\sqrt{2\frac{E_b}{J_0}}\right) & \text{if } E_b/J_0 < 0.71 \end{cases} \]
Worst-case pulse jamming: $\alpha = \alpha^*$; hence it is not a constant on the dotted line.
The DSSS system performs poor under burst-in-time jammer, not under burst-in-frequency jammer (CW jammer).

For example, by comparing the error rate for continuous Gaussian noise jamming with worst-case pulse jamming, the performance difference at $P_e = 10^{-6}$ is as large as 40 dB.
Cutoff rate (Omura and Levitt, 1982)

Performance index
- Usual measure: The required SNR for a specified error rate
- Analytically convenient measure: Cutoff rate

Definition 1 (Cutoff rate)

The maximum R_0 that satisfies

$$P_e(R_c) \leq 2^{-n(R_0-R_c)} \quad \text{i.e., } \quad R_0 \leq R_c + \left(-\frac{1}{n} \log_2 P_e(R_c) \right)$$

is called the cutoff rate, where R_c is the code rate and n is the blocklength.

Interpretation: If $R_c < R_0$, then $P_e \to 0$ as $n \to \infty$.
Sample derivation of cutoff rate

Give

\[
\begin{align*}
\text{Channel symbol 1: } & s_1 = [s_{1,1}, s_{1,2}, \ldots, s_{1,n}] \\
\text{Channel symbol 2: } & s_2 = [s_{2,1}, s_{2,2}, \ldots, s_{2,n}]
\end{align*}
\]

where \(s_{m,j} = \pm \sqrt{E_c} \).

From Slide 4-44,

\[
P_2 = Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right).
\]

Now suppose we randomly assign each of \(s_{m,j} \) independently \((\text{random coding}) \) with

\[
\Pr[s_{m,j} = \sqrt{E_c}] = \Pr[s_{m,j} = -\sqrt{E_c}] = \frac{1}{2}.
\]
Then \(\Pr[d_{12}^2 = 4d\mathcal{E}_c] = \binom{n}{d}2^{-n} \) for integer \(0 \leq d \leq n \).

Using \(Q(x) \leq \frac{1}{2}e^{-x^2/2} \leq e^{-x^2/2} \) yields:

\[
\mathbb{E}[P_2] = \sum_{d=0}^{n} \binom{n}{d}2^{-n}Q \left(\sqrt{\frac{2d\mathcal{E}_c}{N_0}} \right)
\leq \sum_{d=0}^{n} \binom{n}{d}2^{-n}e^{-d\mathcal{E}_c/N_0}
\]
\[
= 2^{-n} \left(1 + e^{-\mathcal{E}_c/N_0} \right)^n
\]
\[
= 2^{-n} \left(1 - \log_2(1 + e^{-\mathcal{E}_c/N_0}) \right)
\]

The union bound for \(M \)-ary random code gives

\[
\mathbb{E}[P_M] \leq (M - 1)\mathbb{E}[P_2] \leq M\mathbb{E}[P_2] = 2^{nR_c}2^{-n(1-\log_2(1+e^{-\mathcal{E}_c/N_0}))}
\]
\[
= 2^{-n(\bar{R}_0 - R_c)} \text{ where } \bar{R}_0 = 1 - \log_2 \left(1 + e^{-\mathcal{E}_c/N_0} \right).
\]

\[M \mathbb{E}[P_2] \approx 2^{nR_c}2^{-nR_0} = 2^{-n(R_0 - R_c)}\]
Since $\mathbb{E}[P_M] \leq 2^{-n(\bar{R}_0-R_c)}$, there must exist a code with

$$P_M \leq 2^{-n(\bar{R}_0-R_c)}$$

and hence

$$R_0 \geq \bar{R}_0 = 1 - \log_2 \left(1 + e^{-\mathcal{E}_c/N_0}\right).$$

As it turns out, this lower bound of cutoff rate is tight! So,

$$R_0 = \bar{R}_0.$$

$R_c = \frac{k}{n}$ (information) bits/chip; So R_0 is measured in bits/chip.
R_0 is usually in the shape of $1 - \log_2(1 + \Delta_\alpha)$, where

$$\Delta_\alpha = \begin{cases}
 e^{-\mathcal{E}_c/N_0} & \text{soft-decision decoding (as just derived)} \\
 \sqrt{4p(1-p)} & \text{hard-decision decoding}
\end{cases}$$

given $p = Q(\sqrt{2\mathcal{E}_c/N_0})$
For worst-case pulsed interference, Omura and Levitt (1982) derived

\[
\Delta \alpha = \begin{cases}
\alpha e^{-\alpha E_c/N_0} & \text{soft-decision with knowledge of jammer state} \\
\min_{\lambda \geq 0} \left\{ e^{-2\lambda E_c} \left[1 - \alpha + \alpha e^{\lambda^2 E_c/N_0/\alpha} \right] \right\} & \text{soft-decision with no knowledge of jammer state} \\
\alpha \sqrt{4p(1-p)} & \text{hard-decision with knowledge of jammer state} \\
\sqrt{4\alpha p(1-\alpha p)} & \text{hard-decision with no knowledge of jammer state}
\end{cases}
\]

where \(p = Q \left(\sqrt{2\alpha E_c/N_0} \right) \) (and \(N_0 = J_0 \)).

The receiver may know the jammer state (side information) by measuring the noise power level in adjacent frequency band.
Cut-off rate

Key
(0) Soft-decision decoding in AWGN ($\alpha = 1$)
(1) Soft-decision with jammer state information
(2) Hard-decision with jammer state information
(3) Soft-decision with no jammer state information
(4) Hard-decision with no jammer state information

R_0 of (3) = 0.

Observations from Omura and Levitt’s results

- When $R_0 < 0.7$ bits/chip, soft-decision in AWGN (curve (0)) performs the same as soft-decision with jammer state information (curve (1)).

 When **jammer state is known** under $R_0 < 0.7$, the **worse-case pulsed jammer** has no effect on **soft-decision** system performance.

- When $R_0 < 0.4$ bits/chip, hard-decision with jammer state information (curve (2)) performs the same as hard-decision with no jammer state information (curve (4)).

 Under $R_0 < 0.4$, knowing the jammer state information does not help improving the **hard-decision** system performance.
Big question: Why (3) performs worse than (4)?

- Without jammer state information, the reception y is “untrustworthy.”
- The soft-decision based on
 \[
 \| y - 2E_c(2c_m - 1) \|^2 = \sum_{i=1}^{n} (y_i - 2E_c(2c_{m,i} - 1))^2
 \]
 may eliminate the correct codeword at the time when a wrong codeword gives a slightly larger
 $\| y - 2E_c(2c_{m'} - 1) \|^2$ due to one very dominant
 $(y_i - 2E_c(2c_{m,i} - 1))^2$.
- However, the hard-decision based on
 \[
 d_{Hamming} (r, c) = \sum_{i=1}^{n} (r_i \oplus c_i)
 \]
 can limit the “dominant affection” from any single bit, and makes the decision based more on the entire receptions.
One can use a quantizer (or a limiter) to achieve the same goal and improves the performance of the soft-decision decoding without jammer state information.

The limiting action from quantizers or limiters ensures that any single bit does not heavily (and dominantly) bias the corresponding decision metric.
12.2-5 Generation of PN sequences
Properties of (deterministic) PN sequences

- **Rule 1: Balanced property**
 - Relative frequencies of 0 and 1 are each (nearly) 1/2.

- **Rule 2: Run length property**
 - Run length (of 0’s and 1’s) are as expected close to a fair-coin flipping.
 - 1/2 of run lengths are 1; 1/4 of run lengths are 2; 1/8 of run lengths are 3 . . . etc.

- **Rule 3: Delay and add property**
 - If the sequence is shifted by any non-zero number of elements, the resulting sequence will have an equal number of agreements and disagreements with the original sequence.
Example of PN sequences

Maximum-length shift-register sequences \((n = 2^m - 1, k = m)\) code

- Also named \(m\)-sequences.

![Diagram of General \(m\)-stage shift register with linear feedback.](image-url)
Maximum-length shift-register sequence

\((n, k) = (2^m - 1, m)\)

By its name, the codewords are the sequential output of \(m\)-stage shift-register with feedback.

The maximum length of codewords is \(2^m - 1\) because the register contents can only have \(2^m - 1\) possibilities.
MAXIMUM-LENGTH SHIFT-REGISTER CODE FOR $m = 3$

<table>
<thead>
<tr>
<th>Information bits</th>
<th>Code words</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 1 1 1 1 0 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 0 0 1 1 1 1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 1 1 1 0 1 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 0 1 1 1 1 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 0 1 0 0 1 1 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 0 1 0 0 0 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 1 0 1 0 0 0</td>
</tr>
</tbody>
</table>
Polynomial representation of m-sequences

The code can be specified by

$$g(p) = 1 + \alpha_1 p + \alpha_2 p^2 + \cdots + \alpha_{m-1} p^{m-1} + p^m$$

based on its structure.

$$a_n = a_{n-m} + \alpha_1 a_{n-m+1} + \alpha_2 a_{n-m+2} + \cdots + \alpha_{m-1} a_{n-1}$$
Vulnerability of m-sequences

Suppose the enemy knows the number of shift registers, m.

Then $(2m - 1)$ observations are sufficient to determine $\alpha_1, \alpha_2, \ldots, \alpha_{m-1}$.

\[
\begin{align*}
 a_{m+1} &= a_1 + \alpha_1 a_2 + \cdots + \alpha_{m-1} a_m \\
 a_{m+2} &= a_2 + \alpha_1 a_3 + \cdots + \alpha_{m-1} a_{m+1} \\
 & \vdots \\
 a_{2m-1} &= a_{m-1} + \alpha_1 a_m + \cdots + \alpha_{m-1} a_{2m-2}
\end{align*}
\]

Possible solutions:

- Frequent change of $(\alpha_1, \alpha_2, \ldots, \alpha_{m-1})$.
- Combination of several m-sequences in a nonlinear way (without changing the necessary properties).
Periodic autocorrelation and crosscorrelation function

Periodic autocorrelation function

\[R_b(j) = \sum_{i=1}^{n} (2b_i - 1)(2b_{i+j} - 1) \]

Periodic crosscorrelation function

\[R_{bb}(j) = \sum_{i=1}^{n} (2b_i - 1)(2\hat{b}_{i+j} - 1) \]

For \(m \)-sequences:

\[R_b(j) = \begin{cases}
 n & j = 0 \\
 -1 & 1 \leq j < n
\end{cases} \]

but \(R_{bb}(j) \) may be large!
PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 2^m - 1$</th>
<th>Number of m sequences</th>
<th>Peak cross-correlation</th>
<th>$\phi_{max}/\phi(0)$</th>
<th>$t(m)$</th>
<th>$t(m)/\phi(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>0.71</td>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>0.60</td>
<td>9</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>6</td>
<td>11</td>
<td>0.35</td>
<td>9</td>
<td>0.29</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>6</td>
<td>23</td>
<td>0.36</td>
<td>17</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>18</td>
<td>41</td>
<td>0.32</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>16</td>
<td>95</td>
<td>0.37</td>
<td>33</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>48</td>
<td>113</td>
<td>0.22</td>
<td>33</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>60</td>
<td>383</td>
<td>0.37</td>
<td>65</td>
<td>0.06</td>
</tr>
<tr>
<td>11</td>
<td>2047</td>
<td>176</td>
<td>287</td>
<td>0.14</td>
<td>65</td>
<td>0.03</td>
</tr>
<tr>
<td>12</td>
<td>4095</td>
<td>144</td>
<td>1407</td>
<td>0.34</td>
<td>129</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Relatively large!!
Although it is possible to select a small subset of m-sequences that have relatively smaller cross-correlation peak values, the number of sequences in the set is usually too small for CDMA applications.

PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 2^m - 1$</th>
<th>Number of m sequences</th>
<th>Peak cross-correlation</th>
<th>$\phi_{\text{max}}/\phi(0)$</th>
<th>$t(m)$</th>
<th>$t(m)/\phi(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>0.71</td>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>0.60</td>
<td>9</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>6</td>
<td>11</td>
<td>0.35</td>
<td>9</td>
<td>0.29</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>6</td>
<td>23</td>
<td>0.36</td>
<td>17</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>18</td>
<td>41</td>
<td>0.32</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>16</td>
<td>95</td>
<td>0.37</td>
<td>33</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>48</td>
<td>113</td>
<td>0.22</td>
<td>33</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>60</td>
<td>383</td>
<td>0.37</td>
<td>65</td>
<td>0.06</td>
</tr>
<tr>
<td>11</td>
<td>2047</td>
<td>176</td>
<td>287</td>
<td>0.14</td>
<td>65</td>
<td>0.03</td>
</tr>
<tr>
<td>12</td>
<td>4095</td>
<td>144</td>
<td>1407</td>
<td>0.34</td>
<td>129</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Gold and Kasami proved that there exist certain pairs of m-sequences with crosscorrelation function taking values in $\{-1, -t(m), t(m) - 2\}$, where

$$
t(m) = \begin{cases}
2^{(m+1)/2} + 1 & \text{if } m \text{ odd} \\
2^{(m+2)/2} + 1 & \text{if } m \text{ even}
\end{cases}
$$
Example. Gold sequence with $m = 10$.

- Periodic crosscorrelation function values

$$\{-1, -2^{(m+2)/2} - 1, 2^{(m+2)/2} - 1\} = \{-1, -65, 63\}$$

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 2^m - 1$</th>
<th>Number of m sequences</th>
<th>Peak cross-correlation ϕ_{max}</th>
<th>$\phi_{\text{max}}/\phi(0)$</th>
<th>$t(m)$</th>
<th>$t(m)/\phi(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>0.71</td>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>0.60</td>
<td>9</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>6</td>
<td>11</td>
<td>0.35</td>
<td>9</td>
<td>0.29</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>6</td>
<td>23</td>
<td>0.36</td>
<td>17</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>18</td>
<td>41</td>
<td>0.32</td>
<td>17</td>
<td>0.13</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>16</td>
<td>95</td>
<td>0.37</td>
<td>33</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>48</td>
<td>113</td>
<td>0.22</td>
<td>33</td>
<td>0.06</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>60</td>
<td>383</td>
<td>0.37</td>
<td>65</td>
<td>0.06</td>
</tr>
<tr>
<td>11</td>
<td>2047</td>
<td>176</td>
<td>287</td>
<td>0.14</td>
<td>65</td>
<td>0.03</td>
</tr>
<tr>
<td>12</td>
<td>4095</td>
<td>144</td>
<td>1407</td>
<td>0.34</td>
<td>129</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Generation of Gold sequences

- Two m-sequences with periodic crosscorrelation function in $\{-1, -t(m), t(m) - 2\}$ are called preferred sequences.
- Existence of two preferred sequences has been proved by Gold and Kasami.

Let $[a_1, a_2, \ldots, a_n]$ and $[b_1, b_2, \ldots, b_n]$ be the selected preferred sequences. Then

$$\text{Gold sequences} = \left\{ \begin{array}{l}
[a_1, a_2, \ldots, a_n] \\
[b_1, b_2, \ldots, b_n] \\
[a_1 \oplus b_1, a_2 \oplus b_2, \ldots, a_{n-1} \oplus b_{n-1}, a_n \oplus b_n] \\
[a_1 \oplus b_2, a_2 \oplus b_3, \ldots, a_{n-1} \oplus b_n, a_n \oplus b_1] \\
\vdots \\
[a_1 \oplus b_n, a_2 \oplus b_1, \ldots, a_{n-1} \oplus b_{n-2}, a_n \oplus b_{n-1}]
\end{array} \right\}$$

This gives $(n + 2)$ Gold sequences in which some of them are no longer maximal length sequences. The autocorrelation function values are also in $\{-1, -t(m), t(m) - 2\}$.
Example.

Construct $n = 31$ Gold sequences.

- Select two preferred sequences:
 \[
 \begin{align*}
 g_1(p) &= 1 + p^2 + p^5 \\
 g_2(p) &= 1 + p + p^2 + p^4 + p^5
 \end{align*}
 \]

\begin{align*}
 h_1(p) &= p^5 + p^2 + 1 \\
 h_2(p) &= p^5 + p^4 + p^2 + p + 1
 \end{align*}
Theorem 1

Give a set of M binary sequences of length n. Then the peak crosscorrelation function value among them is lower-bounded by

$$n\sqrt{\frac{M - 1}{Mn - 1}}$$

- When $M \gg 1$,

$$n\sqrt{\frac{M - 1}{Mn - 1}} \approx n\sqrt{\frac{M}{Mn}} = \sqrt{n}.$$
For Gold sequences \((n = 2^m - 1)\),

\[
\text{peak cross} = t(m) = \begin{cases}
2^{(m+1)/2} + 1 & \text{m odd} \\
2^{(m+2)/2} + 1 & \text{m even}
\end{cases}
\]

\[
= \begin{cases}
\sqrt{2} \cdot \sqrt{2^m} + 1 & \text{m odd} \\
2 \cdot \sqrt{2^m} + 1 & \text{m even}
\end{cases}
\]

\[
= \begin{cases}
\sqrt{2\sqrt{n+1} + 1} & \text{m odd} \\
2 \cdot \sqrt{n+1} + 1 & \text{m even}
\end{cases}
\]

Therefore, Gold sequences do not achieve the Welch bound.
A set of $M = 2^{m/2}$ sequences of length $n = 2^m - 1$ for any m even.

It is formed by the following procedure.

1. Pick an m-sequence $a = [a_1, a_2, \ldots, a_n]$.
2. Since $n = 2^m - 1 = (2^{m/2} - 1)(2^{m/2} + 1)$, we can fragment a into $(2^{m/2} + 1)$-bit blocks.

$$[a_1, \ldots, a_{2^{m/2}+1}, a_{2^{m/2}+2}, \ldots, a_{2(2^{m/2}+1)}, a_{2^22^{m/2}+3}, \ldots]$$

block 1 block 2

3. Let

$$b = [a_k, a_{2k}, \ldots, a_{(2^{m/2} - 1)k}, a_k, a_{2k}, \ldots, a_{(2^{m/2} - 1)k}, \ldots]$$

where $k = 2^{m/2} + 1$.
Kasami sequences = \[
\left\{ \begin{array}{c}
[a_1, a_2, \ldots, a_n] \\
[a_1 \oplus b_1, a_2 \oplus b_2, \ldots, a_n \oplus b_n] \\
[a_1 \oplus b_2, a_2 \oplus b_3, \ldots, a_n \oplus b_1] \\
\vdots \\
[a_1 \oplus b_{2^{m/2}-1}, a_2 \oplus b_{2^{m/2}}, \ldots, a_n \oplus b_{2^{m/2}-2}]
\end{array} \right\}
\]

The off-peak autocorrelation and crosscorrelation function values are in \{-1, -(2^{m/2} + 1), 2^{m/2} - 1\} and the Welch bound is achieved (at a price of much less number of sequences, i.e., \(\sqrt{n + 1} = 2^{m/2}\), can be used!)
What you learn from Chapter 12

- Fundamental of spread spectrum technology
 - broadband interference versus narrowband interference
 - CW jammer
- Direct sequence spread spectrum
 - Basic structure with encoder and modulo-2 adder
 - Performance analysis under broadband interference, narrowband interference and CW jammer
 - Union bound (definitions of jamming margin, processing gain and coding gain)
- Performance enhancement from coding gain
 - Soft decision versus hard decision
- Pulsed interference – worst case pulse jammer
What you learn from Chapter 12

- Cut-off rate and its operational meaning and implication (for soft decision without jammer state info)
- Generation of PN sequences
 - m sequence, Gold sequence, Kasami sequences, Welch bound
 - Periodic autocorrelation and crosscorrelation function