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Abstract—In this paper, we propose an iterative algorithm
to jointly design codes and training sequences for frequency-
selective block fading channels with partial channel state infor-
mation (CSI) at the receiver. After showing that the maximum-
likelihood (ML) decoding metric over channels with partial CSI
can be well approximated by the joint maximum-likelihood
(JML) decoding metric for combined channel estimation and
data detection, we propose to use the JML criterion to search
for good codes and training sequences in an iterative fashion.
Simulations show that the code and training sequence found by
our method can outperform a typical system using a channel
code with a separately designed training sequence, in particular
when codes of low rates are considered.
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I. I NTRODUCTION

In general, the receiver structures can be classified into
two categories: coherent receivers and non-coherent receivers.
For a coherent receiver, channel estimation is performed first,
and then the channel decoder uses the estimated channel
information as the true one when performing the decoding.
For a non-coherent receiver, no channel estimation device is
needed as the decoding is performed without channel state
information; hence, no training sequence is necessary for a
non-coherent receiver.

The design of a non-coherent system [1–4] usually assumes
perfect synchronization, i.e., the receiver can find the exact
codeword margins. However, since frame synchronization and
channel estimation are often done based on the same training
sequence or pilot signals, such an assumption may not be
justifiable. As an example, every148-bit normal burst of
GSM signals includes a26-bit training sequence. Without
the information of the codeword margin, joint decoding of
the code and training sequence in this148-bit burst may be
technically infeasible. Thus, for a non-coherent system without
a training sequence, the assumption of perfect synchronization
may be lack of footing.

For this reason, we consider in this work a system with
a training sequence for frame-synchronization and channel

estimation. Since the estimated channel state information(CSI)
is never perfect because of the additive noise, the receiveris
termed apartial coherent receiver. The first paper about a
partial coherent receiver is perhaps [6], which did not draw
much attention for long. Recently, several works [7–11] have
re-examined this idea. In particular, the authors in [9–11]
consider the imperfection of the estimated CSI at receivers,
searching for good constellations for certain modulations.
Different from these works, we proposed to jointly design
the code and training sequence by maximizing the system
performance through an iterative search algorithm.

Throughout the paper, the following notations will be used:
For a matrixX, det |X| is its determinant;tr(X) is its trace;
XH denotes its Hermitian transpose.

II. SYSTEM MODEL

In our system setting, a signalb = [b1, . . . , bN ]T is trans-
mitted over a frequency-selective block fading (specifically,
quasi-static fading) channel of memory orderP − 1. Here,
the superscript “T” represents the vector (or matrix) transpose
operation. For1 ≤ i ≤ N , we restrict thatbi is the output
of constant-amplitude2M -PSK modulation, i.e.,|bi|2 = 1,
whereM > 0. Among theN components inb, the first T
components are the training sequence and hence are known to
both the transmitter and receiver, while the latterN − T ones
are used to transmit the data. By denotingB as

B =

[
BP

BD

]
,

which is formed by a(T ×P ) matrixBP and a((L−T )×P )
matrix BD with L = N + P − 1, where
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the received signaly can be formulated by

y = Bh+ n (1)

where n is zero-mean circular symmetric complex Gaus-
sian distributed with correlation matrixσ2

nI, and h =
[h1, . . . , hP ]

T is the channel taps that remain constant during a
L-symbol transmission block (and may change across blocks).
Throughout the paper,I will be used to denote the identity
matrix of a proper size. It is assumed that perfect frame syn-
chronization can be achieved, and adequate guard periods are
added between consecutive transmission blocks so that there is
no inter-block interference. Notably, both the transmitter and
receiver know nothing about the channel coefficientsh except
the multipath parameterP .

A. On the arrangement of training sequence

Generally speaking, the training sequence does not have to
be placed at the beginning ofb but can be distributed over
the entire transmission signal. However, for channels suffering
additive white Gaussian noise with unknown constanth, such
a placement may be justified by the following argument.

Based on the system model in (1), we can divide the
received signaly into two parts:

yP = BPh+ nP

and
yD = BDh+ nD,

where nH =
[
nH

P nH

D

]
and superscript “H” denotes the

Hermitian transpose operation. Then the least square estimate
of h givenBP andyP is

ĥ = (BH

PBP )
−1BH

PyP .

Here, we implicitly assume thatT ≥ P . Denote byh̃ = h−ĥ

the estimation error. We then derive

h̃ = h− ĥ = h− (BH

PBP )
−1BH

PyP

= h− (BH

PBP )
−1BH

P (BPh+ nP )

= −(BH

PBP )
−1BH

PnP ,

which impliesE[−(BH

PBP )
−1BH

PnP ] = 0 and

C
h̃
= E[h̃h̃

H

] = E[(BH

PBP )
−1BH

PnPn
H

PBP (B
H

PBP )
−1]

= σ2
n(B

H

PBP )
−1.

Thus,h̃ is zero-mean circular symmetric Gaussian distributed
with covariance matrixσ2

n(B
H

PBP )
−1. We can then obtain a

well-known lower bound of mean square errorE[‖h̃‖2] [2],
[5] as

E[‖h̃‖2] = tr
(
E[h̃h̃

H

]
)
= σ2

ntr
(
(BH

PBP )
−1
)
≥

σ2
nP

T
, (2)

with equality holding whenBH

PBP = T I. This then shows that
to place the training sequence at the beginning ofb, together
with BH

PBP = T I, can yield the minimumE[‖h̃‖2]. In the
simulation section, all the training sequences are chosen to
satisfy BH

PBP = T I so that the minimumE[‖h̃‖2] can be
achieved.

III. D ECODING CRITERION FOR ARECEIVER WITH

PARTIAL CSI

A. ML decoding criterion

From the channel model in (1), we obtain

yD = BDĥ+ BD(h− ĥ) + nD. (3)

Hence, givenBD and ĥ, vector yD is complex Gaussian
distributed with meanE[yD] = BDĥ and covariance matrix

C = σ2
nI+ BDC

h̃
BH

D = σ2
n

(
I+ BD(BH

PBP )
−1BH

D

)
.

By Sylvester’s determinant theorem, we have

det(C) = σ2P
n det

(
I+ (BH

PBP )
−1BH

DBD

)
.

Together with

C−1 = σ−2
n

(
I− BD(BH

DBD + BH

PBP )
−1BH

D

)
,

the ML decoding criterion for the receiver with partial CSI
should be

b̂ML = argmax
BD

Pr(yD|BD, ĥ)

= argmax
BD

(
exp{−(yD − BDĥ)HC−1(yD − BDĥ)}

πP det(C)

)

= argmin
BD

(
‖yD − BDĥ‖2

−(yD − BDĥ)HQB(yD − BDĥ)

+σ2
n log det

(
I+ (BH

PBP )
−1BH

DBD

))
, (4)

where

QB = BD

(
BH

DBD + BH

PBP

)−1
BH

D = BD

(
BHB

)−1
BH

D.

We then examine the ML decoding criterion in (4) in two
extreme cases: no CSI (by which we meanBP is a T × P
all-zero matrix) and perfect CSI (by which we meanh̃ = 0

with probability one).
WhenBP is aT ×P all-zero matrix, (4) can be reduced to

the well-known GLRT criterion, i.e.,

b̂ML, no CSI

= argmin
BD

{
−yH

DBD

(
BH

DBD

)−1
BH

DyD − σ2
n log det(C

−1)
}

= argmin
BD

∥∥P⊥

DyD

∥∥2 − σ2
n log det

(
P⊥

D

)

= argmin
BD

∥∥P⊥

DyD

∥∥2 ,

whereP⊥

D = I−BD(BH

DBD)−1BH

D. Note that it can be shown
that the determinant ofP⊥

D is always equal to0. If however,
the receiver has perfect CSI, thenE[h̃h̃

H

] becomes an all-zero
matrix. Hence,C = σ2

nI, which reduces (4) to

b̂ML, perfect CSI= argmin
BD

{∥∥∥yD − BDĥ

∥∥∥
2
}
. (5)



B. near-ML decoding criterion at medium to high SNRs

At medium to high SNRs, the last term in (4) becomes
negligible when being compared the first two terms because
σ2
n ≈ 0. We can then yield a near-ML decoding criterion as

follows.

b̂Near-ML = argmin
BD

{
‖yD − BDĥ‖2

−
(
yD − BDĥ

)H
QB

(
yD − BDĥ

)}
. (6)

By [1], we know that the joint ML decoding of both the code
and training sequence for giveny is

b̂JML = argmin
BD

{
‖P⊥

By‖
2
}
,

where

P⊥

B = I− PB = I− B(BHB)−1BH.

We then found that the near-ML decoding criterion in (6)
performs exactly the joint ML decoding in [1]. We summarize
this result in the next lemma.

Lemma 1:

b̂Near-ML = b̂JML.

Proof: First, we note that the near-ML decoding criterion
in (6) can be equivalently changed to:

b̂Near-ML = argmin
BD

{(
y − Bĥ

)H (
I−QB

) (
y − Bĥ

)}
, (7)

where

QB =

[
0T×T 0T×(L−T )

0(L−T )×T QB

]
.

Letting Q̃B = PB −QB , we obtain that

Q̃B =

[
BP (B

HB)−1BH

P BP (B
HB)−1BH

D

BD(BHB)−1BH

P 0(L−T )×(L−T )

]
.

Continuing the derivation in (7) yields

b̂Near-ML =
(
y − Bĥ

)H (
P⊥

B + Q̃B

)(
y − Bĥ

)

= yHP⊥

By + yHQ̃By − ĥ
H

BHQ̃By − yHQ̃BBĥ

+ĥ
H

BHQ̃BBĥ

= ‖P⊥

By‖
2,

where the second equality follows becauseyHQ̃By −

ĥ
H

BHQ̃By − yHQ̃BBĥ+ ĥ
H

BHQ̃BBĥ = 0.
We end this section by remarking that ifBH

DBD is equal
to a constant, then it can be derived from (4) thatb̂ML =
b̂Near-ML = b̂JML. As a result, the ML decoding criterion in
(4) is simplified to the near-ML (equivalently, JML) decoding
criterion.
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Fig. 1. Performances of the ML decoding criterion in (4) with perfect
knowledge ofσ2

n
(ML), the near-ML decoding criterion in (6) (near-ML), and

the coherent receiver usinĝh as the perfect-CSI and adopting the decoding
criterion in (5) (coh).

IV. I TERATIVE JOINT CODE AND TRAINING SEQUENCE

DESIGN ALGORITHM

In this section, we provide an iterative algorithm to design
the code and training sequence jointly.

The cost functionf that is to minimize during the search
process is the union bound constituted by pairwise error
probabilities (PEPs)

f(C,BP ) =
∑

i,j

Pr{BD(j) claimed|BD(i) transmitted,BP } (8)

whereC = {BD(0), · · · ,BD(2K − 1)}, andK is the length
of information bits. Since the near-ML decoding criterion is
equivalent to the JML decoding criterion, (8) can be well
approximated by the PEP union bound derived for the JML
decoding in [1] at medium to high SNRs.

Thus, after an initial training sequenceB(0)
P is generated,

simulated annealing algorithm [1] is employed to search for
a codeC(0) that has an acceptably small PEP union bound.
Based on theC(0), the nextB(1)

P is again obtained via simulated
annealing. The process is repeated until the maximum number
of iterations is achieved. Detail is summarized below.

Step 1. Set the maximum iteration numberIM and initialize
i = 0. GenerateB(i)

P randomly.
Step 2. Performsimulated annealing algorithmto search for a

good codeC(i) based on the cost functionf(C(i),B
(i)
P ).

Step 3. Seti = i + 1. Performsimulated annealing algorithm
to search for a good training sequenceB

(i)
P based on the

cost functionf(C(i−1),B
(i)
P ).

Step 4. Ifi > IM , outputB(i)
P andC(i) and stop the algorithm;

otherwise, go to Step 2.



V. SIMULATIONS

Same as in [1], the channel coefficientsh used in our
simulations is zero-mean complex-Gaussian distributed with
E[hhH] = (1/P )I and P = 2. The SNR of the system is
given by

SNR=
tr
(
E[hhH]

)

σ2
n

=
E[hHh]

σ2
n

=
1

σ2
n

.

We then examined the system consisting of the7-bit training
sequence[b1, . . . , b7] = [0, 0, 0, 0, 1, 0, 1] and the (15, 11)
Hamming code. The performances of receivers respectively
using the ML decoding criteron in (4) with perfect knowledge
of noise powerσ2

n, and the near-ML decoding criterion in (6),
as well as the coherent receiver usingĥ as the perfect-CSI
and adopting the decoding criterion in (5), are summarized in
Fig. 1. The results show that the ML decoding outperforms
the coherent receiver, and the performance gap is around0.7
dB. Furthermore, the near-ML decoding, which requires no
knowledge ofσ2

n, performs as good as the ML decoding. We
conclude from Fig. 1 that the near-ML criterion, as we have
claimed by its naming, can yield almost the same performance
as the ML criterion at medium to high SNRs. As a result, our
proposed joint design of code and training sequence based on
the near-ML criterion is then justified.

We next compare the performance of the joint design of
code and training sequence obtained from our iterative search
algorithm with that of the(7, 4) Hamming code and training
sequence[b1, . . . , b4] = [0, 1, 0, 0] as shown in Fig. 2. The
code our algorithm found is{10, 13, 16, 23, 33, 38, 59,
60, 67, 68, 88, 95, 105, 110, 114, 117}, where the num-
bers in the parentheses are calculated based on the formula∑N−T

j=1

(
bT+j · 2

N−T−j
)
. Our results show that our code can

further improve the ML performance of the(7, 4) Hamming
code and training sequence[b1, . . . , b4] = [0, 1, 0, 0] with a
gain about0.3 dB.

By examining codes of different code rates further (for
which the results are not shown in the paper due to the page
limits), we found that more performance gain can be obtained
by our joint design when a smaller code rate is concerned. As
an example, when the extreme case withK = 1 (i.e., there
are 2K = 2 codewords) is considered, Fig. 3 shows that our
proposed joint design can considerably outperform the channel
code that consists of all-(+1) and all-(−1) codewords, which
we term “antipolar” in the figure. The code our algorithm
found is{221, 1826} in decimal representation. Note that the
antipolar channel code we compare our design with should
be optimal in performance when perfect channel estimation is
assumed.

VI. CONCLUSION

After confirming the well approximation of the near-ML
criterion to the ML criterion at medium to high SNRs, we
proposed in this work an iterative algorithm to jointly design
the code and training sequence for a receiver to have partial
CSI information based on the near-ML criterion. Simulations
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Fig. 2. ML performances of the(7, 4) code and 4-bit training sequence
[b1, . . . , b4] = [1, 0, 1, 1] found by our simulated-annealing-based iterative
search algorithm (SA), and the (7,4)-Hamming code and training sequence
[b1, . . . , b4] = [0, 1, 0, 0] (Hamming-ML). Also shown is the performance
of the coherent receiver for the (7,4)-Hamming code and training sequence
[b1, . . . , b4] = [0, 1, 0, 0] using ĥ as the perfect-CSI and adopting the
decoding criterion in (5) (Hamming-coh).
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Fig. 3. ML performances of the(15, 1) code and7-bit training sequence
[b1, . . . , b7] = [1, 0, 1, 0, 0, 1, 1] found by our simulated-annealing-based
iterative search algorithm (SA-(15,1)-(7)-ML), and the (15,1)-binary code
and training sequence[b1, . . . , b7] = [0, 0, 0, 0, 1, 0, 1] (Antipolar-(15,1)-(7)-
ML). Also shown is the performance of the coherent receiver for the (15,1)
code and training sequence[b1, . . . , b7] = [0, 0, 0, 0, 1, 0, 1] using ĥ as the
perfect-CSI and adopting the decoding criterion in (5) (Antipolar-(15,1)-(7)-
coherent)



show that the code and training sequence that are found by our
iterative algorithm can outperform the traditional systemwith
a channel code and a training sequence satisfying the self-
orthogonal conditionBH

PBP = T I, particularly when codes of
low rate are considered.
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