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Recently, two near-optimal decoding algorithms [Shao, R.Y., Lin, S., and Fossorier, M.P.C., 2003. Two
decoding algorithms for tailbiting codes. IEEE transactions on communications, 51 (10), 1658–1665; Krishnan,
K.M. and Shankar, P., 2006. Approximate linear time ML decoding on tail-biting trellises in two rounds. In
IEEE international symposium on information theory, Seattle, WA, USA, pp. 2245–2249] have been proposed for
convolutional tail-biting codes. Both algorithms iterate the Viterbi algorithm twice, but use different metrics in
the second iteration. Simulations showed that the latter algorithm (Krishnan and Shankar 2006) improved on the
earlier one (Shao et al. 2003) in word error rates at the price of additional storage consumption. In this work, we
prove that with a proper modification to the earlier one, the two algorithms can be made to have exactly the same
survivor path at each state in the trellis, and hence are equivalent in error performance. One can consequently
adopt the modified algorithm to alleviate the need for extra storage consumption of the later algorithm and,
at the same time, achieve equally good performance.
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1. Introduction

Nowadays, convolutional tail-biting codes (CTBC) are
popular because they can neutralize the loss on the
code rate and result in less-performance degradation
than the zero-tail convolutional codes (ZTCC) (Wang
and Bhargava 1989, Shao et al. 2003). Unlike the
ZTCCs for which all code paths on the trellis are
required to start from and end at the zero state, the
code paths of the CTBCs can start from a state other
than the zero one, as long as they end at the same state.
For convenience, we will refer to the code paths on the
CTBC trellis as the tail-biting paths. Since the decoding
of the CTBC requires additional identification of the
initial (equivalently, the final) state corresponding to
the transmitted codeword, and since the number of
states grows exponentially with the memory order, the
maximum-likelihood (ML) decoding of the CTBC
becomes much more involved than the ML decoding
of the ZTCC.

In the literature, several suboptimal decoding
algorithms for the CTBC have been proposed (Cox
and Sundberg 1994, Shao et al. 2003, Krishnan and
Shankar 2006, Chen and Tsai 2008). Among them, the
wrap-around Viterbi algorithm (WAVA) (Shao et al.
2003) and the approximate linear time ML decoding

algorithm (ALTMLA) (Krishnan and Shankar 2006)
are the two that can achieve the least decoding
complexity. In comparison with the WAVA, the
ALTMLA has better word error rate (WER) perfor-
mance but requires more memory storage. Further
improvement on the average number of iterations and
memory consumption of the WAVA is later conducted
in Chen and Tsai (2008). Comparison of the WAVA
with an improvement over the decoding algorithm
given in Cox and Sundberg (1994) and the bidirectional
Viterbi algorithm (VA) over the fading channel can be
found in Zhang et al. (2009). Recently, an ML-
decoding algorithm for the CTBC has been proposed
(Pai et al. 2008). Although optimal in performance, the
ML decoding algorithm, of which the decoding com-
plexity varies with the signal-to-noise ratio (SNR) as
contrary to the constant-decoding complexity of the
WAVA with fixed number of iterations, may only be
suitable for a software implementation.

In this work, we prove that even though the
WAVA looks different from the ALTMLA, it can be
made completely equivalent to the ALTMLA by a
proper modification. The modified WAVA (which will
be termed the MWAVA in the sequel) and the
ALTMLA then give exactly the same survivor path
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at each state in the decoding trellis, and hence have
equally good error performance. One can accordingly
adopt the MWAVA to alleviate the need for the extra
storage required by the ALTMLA with no sacrifice in
performance. The establishment of this equivalence
also facilitates the use of the ALTMLA to provide an
explanation on why the MWAVA (as well as the
WAVA) performs well with only two iterations.

2. Background and refinement of the WAVA

Denote by !C the ðn, l,mÞ CTBC with information bits
of length L, where n is the number of output bits per
information bit, and m is the memory order. The trellis
of !C then has 2m states at each level, and is of Lþ 1
levels. As mentioned in the previous section, the
corresponding tail-biting paths for the codewords in
!C should constrain on the same initial and final state.
For convenience in later discussion, we denote by !Cs
the super code of !C, which additionally takes in all
paths that end at a final state different from the initial
state.

Let v ¼D ðv0, v1, . . . ,vN&1Þ be a binary codeword
of !C, where N¼ nL and each vj 2 f0, 1g. It can be
verified (Han et al. 1993) that the ML decoding output
v' for the received vector r satisfies

XN&1

j¼0
!j & ð&1Þv

'
j

! "2 (
XN&1

j¼0
!j & ð&1Þvj
! "2

for all v 2 !C,

where !j ¼
D
In½Prðrjj0Þ=Prðrjj1Þ* and prð+j+Þ is the chan-

nel transition probability. A metric for a path in the
trellis can then be defined as follows.

Definition 1: For a path with label xði,sÞðln&1Þ ¼
ðxði,sÞ0 ,xði,sÞ1 , . . . , xði,sÞðln&1ÞÞ 2 f0, 1g

ln, which starts from
state i at level 0 and ends at state s at level l, the M-
metric associated with it is defined as

M xði,sÞðln&1Þ

# $
¼D
Xln&1

j¼0
M xði,sÞj

# $
,

where

M xði,sÞj

# $
¼D !j & ð&1Þx

ði,sÞ
j

# $2
:

Based on the above definition, the target of the ML
decoding is to find the tail-biting path with the smallest
M-metric in the trellis.

When directly applying the VA onto the CTBC
trellis, the resultant survivor paths may not end at the
state from which they start. Hence, the path found by
the VA is only guaranteed to be contained in the super
code !Cs but does not necessarily correspond to a

codeword in !C. In order to solve this problem, WAVA
was proposed in Shao et al. (2003), which tried to
locate the best tail-biting path by iterating the VA by
the way of wrapping the final states of the CTBC trellis
around the respective initial states.

According to the simulation results given in Shao
et al. (2003), the WAVA can achieve near ML
performance with only two iterations. The two-
iteration WAVA is outlined in the following:

The first iteration (Iter1)

Iter1-Step 1: Associate zero initial metric with every
zero-length path containing only the initial state at
level 0. Record "ðiÞ as the initial metric associated with
state i at level 0.

Iter1-Step 2: Apply the VA using M-metric with
initial metric ". At the end of the first iteration, if the
best survivor path is also a tail-biting path, output it as
the decoding result, and stop the algorithm; otherwise,
proceed with the next iteration.

The second iteration (Iter2)

Iter2-Step 1: Initialize every zero-length path con-
taining only the initial state at level 0 with the metric of
the first-iteration survivor path ending at the same
state at level L. Record "ðiÞ as the initial metric
associated with state i at level 0.

Iter2-Step 2: Apply the VA again using M-metric
with initial metric ". At the end of the 2nd iteration,
output the best tail-biting path if it exists; otherwise,
output the best survivor path ending at level L (in
which case, a WER event may occur).

In the above algorithm, a set of 2m survivors results
after the completion of the first iteration. Notably,
these survivor paths do not necessarily correspond to
codewords in !C, and they may end at some final states
different from the ones from which they start. In such a
case, the algorithm proceeds with the next iteration.
However, if none of the survivor paths are tail-biting
paths after two iterations of the VA, the algorithm
simply outputs the best survivor path (which is of
course not a codeword) and may admit a failure in
error correcting.

Another suboptimal algorithm, named ALTMLA,
was proposed recently (Krishnan and Shankar 2006).
The ALTMLA needs to record the metric of every
intermediate survivor ever explored during the execu-
tion of the first iteration. These recorded metrics will
then be incorporated into the new metric used in the
second VA iteration, which is defined below.

Definition 2: Denote by cl ðsÞ the path metric of the
survivor ending at state s at level l, which is recorded
during the execution of the first VA iteration.
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Let "ðiÞ ¼ cLðiÞ be the initial metric at state i at level 0.
Then for a path with label xði,sÞðln&1Þ ¼
ðxði,sÞ0 ,xði,sÞ1 , . . . , xði,sÞln&1Þ 2 f0, 1g

ln, which starts from
state i at level 0 and ends at state s at level l, the
accumulative path metric employed by the ALTMLA
in the second VA iteration is defined as

!M xði,sÞðln&1Þ

# $
¼D " ið Þ þM xði,sÞðln&1Þ

# $
& cl sð Þ:

Due to the compensation for cl ðsÞ in the new
metric, the ALTMLA improves the performance of the
WAVA. Krishnan and Shankar (2006) also observed
that when the metric of a survivor path obtained from
the first iteration is no less than the metric of the best
first-iteration survivor tail-biting path, the best tail-
biting path obtained from the second iteration can
never start from the ending state of this survivor path.
They accordingly exclude those paths starting from
such state by setting their initial metrics to infinity.

Although the presentation of the ALTMLA looks
dissimilar to the WAVA, we found that the latter
algorithm can be made equivalent to the former by a
proper modification.

Modified two-iteration WAVA:

The first iteration (Iter1): The same as the WAVA.
The second iteration (Iter2)

Iter2-Step 100: Initialize every zero-length path con-
taining only the initial state at level 0 with the metric of
the first-iteration survivor path ending at the same
state at level L. Replace those initial metrics with
infinity if they are not less than the minimum metric
among all survivor tail-biting paths obtained in the
first iteration. Record "ðiÞ as the initial metric associ-
ated with state i at level 0.

Iter2-Step 200: Apply the VA again using M-metric
with initial metric ". At the end of the second iteration,
subtract "ðiÞ from the final metric at state i at level L.
Output the best tail-biting path if it exists; otherwise,
output the best survivor path ending at level L (in
which case, a WER event may occur).

Since the ALTMLA and the MWAVA employ the
same metric in their first VA iteration, their equiva-
lence can be sufficiently substantiated by showing that
both algorithms yield the same survivor path at each
state at their second iterations. It can be proved by
induction on levels of the trellis. When l ¼ 0, it is clear
from Definition 2 that

!M xði,iÞð&1Þ

# $
¼D " ið Þ þM xði,iÞð&1Þ

# $
& c0 ið Þ ¼ " ið Þ

since Mðxði,iÞð&1ÞÞ ¼ 0 and c0ðiÞ ¼ 0. The equivalence of
the two algorithms at the first level is thus confirmed.

Suppose that the ALTMLA and the MWAVA
have the same survivor path at each state at level
ðk& 1Þ. Assume that the two paths that enter state s at
level k are, respectively, labeled with xði1,sÞðkn&1Þ and xði2,sÞðkn&1Þ,
where i1 and i2 are, respectively, the initial states of the
two entering paths. Then, for the MWAVA, the
accumulated metrics of the two entering paths are,
respectively,

" i1ð Þ þM xði1,sÞðkn&1Þ

# $
and " i2ð Þ þM xði2,sÞðkn&1Þ

# $
:

By the assumption that the ALTMLA and the
MWAVA have the same survivor path at each state up
to level ðk& 1Þ, the entering paths into state s at level k
for the ALTMLA should be the same (as the
MWAVA), and their ALTMLA metrics are,
respectively,

!M xði1,sÞðkn&1Þ

# $
¼ " i1ð Þ þM xði1,sÞðkn&1Þ

# $
& ck sð Þ

and

!M xði2,sÞðkn&1Þ

# $
¼ " i2ð Þ þM xði2,sÞðkn&1Þ

# $
& ck sð Þ:

Therefore, both algorithms have the same survivor
at state s at level k because subtraction of the same
quantity ck(s) does not alter the comparison result
between the two.

Finally, we can derive from Iter2-Step 200 of the
MWAVA that the survivor path ending at state s at
level L has accumulative metric

"ðiÞ þM xði,sÞðLn&1Þ

# $
& "ðsÞ

¼ "ðiÞ þM xði,sÞðLn&1Þ

# $
& cLðsÞ

¼ !M xði,sÞðLn&1Þ

# $

for both the MWAVA and the ALTMLA because the
MWAVA will subtract "ðsÞ from the final metric at
state s at level L, and cLðsÞ ¼ "ðsÞ. Since the above
argument holds true for every final state, s, the proof is
then completed.

As the MWAVA does not need to record the metric
of the survivor path at each state during the first
iteration, it can save the storage space of 2mðLþ 1Þ
required by the ALTMLA. The !M-metric employed by
the ALTMLA nonetheless provides an explanation on
why the MWAVA (as well as the WAVA) performs
well with only two iterations. According to Shankar
et al. (2006), the !M-metric is indeed an estimate about
the M-metric of a tail-biting path passing through a
particular state. Hence, what the ALTMLA (or the
MWAVA) intends to do is to retain the prospective
best tail-biting path at each particular state.
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3. Simulation results over AWGN channels

In this section, we examine the WERs of the WAVA
and the MWAVA (equivalently, the ALTMLA) by
simulations over the additive white Gaussian noise
(AWGN) channels. We assume that the codeword is
antipodally modulated. Hence, the j-th received scalar
is given by

rj ¼ ð&1Þvj
ffiffiffiffi
E
p
þ #j,

for 0 ( j ( N& 1, where E is the signal energy per
channel bit, and f#jgN&1j¼0 are independent noise samples
of a white Gaussian process with single-sided noise
power per hertz N0. The SNR for the channel is
therefore E=N0. In order to account for the code
redundancy for different code rates, we will use the
SNR per information bit as

Eb

N0
¼ NE=L

N0
¼ n

E

N0

& '
:

For all simulations below, at least 30 word errors
have been reported to ensure that there is no bias on
the simulation results.

We first consider the (2,1,4) binary CTBC with
generator 72,62 (octal). The length of the information
bits simulated is L¼ 20.

Figure 1 compares the WER of the two-iteration
WAVA with that of the two-iteration MWAVA for the
(2,1,4) CTBC. As shown in the figure, the two-iteration
MWAVA (equivalently, the ALTMLA) has slightly
better performance than the two-iteration WAVA. It is
also noted from Figure 1 that the two-iteration WAVA
and the two-iteration MWAVA are only slightly infe-
rior to the optimal performance for allEb=N0 simulated.

In Figure 2, we investigate the effect of iterations
on the MWAVA (equivalently, the ALTMLA) for the
(2,1,4) CTBC. According to Figure 2, the second
iteration produces the largest gain on WER perfor-
mance. In addition, with four iterations, a comparable
performance to the ML decoder can be achieved.

We next consider the (2,1,6) binary CTBC with
generator 554,744 (octal). The length of the informa-
tion bits simulated is L¼ 48.

In Figure 3, the WERs of the two-iteration WAVA
and the two-iteration MWAVA for the (2,1,6)
CTBC are presented. The two-iteration MWAVA

Figure 3. The WERs of the two-iteration WAVA
(WAVA(2)), the two-iteration MWAVA (MWAVA(2)),
and the ML decoders for the (2,1,6) CTBC with generator
554,744.

Figure 1. The WERs of the two-iteration WAVA
(WAVA(2)), the two-iteration MWAVA (MWAVA(2)),
and the ML decoders for the (2,1,4) CTBC with
generator 72,62.

Figure 2. The WERs of the t-iteration MWAVA
(MWAVA(t)) and the ML decoder for the (2,1,4) CTBC
with generator 72,62.
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(equivalently, the ALTMLA) again has slightly better
performance than the two-iteration WAVA. However,
the two-iteration WAVA and the two-iteration
MWAVA now yield almost identical performance to
the ML decoder for all Eb=N0 simulated, and hence are
near optimal as having been addressed in Shao et al.
(2003).

Figure 4 investigates the effect of iterations on the
MWAVA (equivalently, the ALTMLA) for the (2,1,6)
CTBC. The same as the results obtained from the
(2,1,4) CTBC, the second iteration produces the largest
gain on WER performance, now only with two

iterations. An almost identical performance to the
ML decoder can be achieved.

We subsequently turn to the (2,1,8) binary CTBC
with generator 515,677 (octal). The length of the
information bits simulated is L¼ 48.

In Figure 5, we summarize the WERs of the two-
iteration WAVA and the two-iteration MWAVA for
the (2,1,8) CTBC. As expected, the two-iteration
MWAVA (equivalently, the ALTMLA) has slightly
better performance than the two-iteration WAVA.
Also, the two-iteration WAVA and the two-iteration
MWAVA are only slightly inferior to the optimal
performance for all Eb=N0 simulated.

In Figure 6, we investigate the effect of iterations
on the MWAVA (equivalently, the ALTMLA) for the
(2,1,8) CTBC. This figure then shows that the second
iteration again produces the largest gain on WER
performance. Yet, it requires four iterations to result in
a comparable performance to the ML decoder.

The final code to be examined is the (2,1,12) binary
CTBC with generator 5135,14477 (octal). The length of
the information bits simulated is L¼ 48.

Figure 7 concludes similarly to the previous simu-
lations that the two-iteration MWAVA slightly
improves the two-iteration WAVA in performance.
However, for the (2,1,12) CTBC, the WERs of the two-
iteration WAVA and the two-iteration MWAVA are
not as close to the ML performance as those obtained
from the previous CTBCs of smaller constraint length.

In Figure 8, we again investigate the effect of
iterations on the MWAVA (equivalently, the
ALTMLA) for the (2,1,12) CTBC code. Analogously,
we observe from this figure that the second iteration

Figure 4. The WERs of the t-iteration MWAVA
(MWAVA(t)) and the ML decoder for the (2,1,6) CTBC
with generator 554,744.

Figure 5. The WERs of the two-iteration WAVA
(WAVA(2)), the two-iteration MWAVA (MWAVA(2)),
and the ML decoders for the (2,1,8) CTBC with generator
515,677.

Figure 6. The WERs of the t-iteration MWAVA
(MWAVA(t)) and the ML decoder for the (2,1,8) CTBC
with generator 515,677.
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produces the largest gain on WER performance.
However, a comparable performance to the ML
decoder cannot be achieved by multiple iterations for
the (2,1,12) CTBC code.

4. Conclusions

Even though the ALTMLA proposed in Krishnan and
Shankar (2006) is seemingly different from the WAVA

given in Shao et al. (2003), we have proved that the
latter can be made equivalent in performance to the
former with a proper modification. As a consequence,
the new modification can retain the better performance
of the ALTMLA without the drawback of its large
memory consumption.
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Nomenclature

!C ðn, l,mÞ convolutional tail-biting
code

!Cs super code of !C
E signal energy per channel bit
Eb signal energy per information bit
L length of information bits
m memory order of CTBC
n number of output bits per infor-

mation bit of CTBC
N n +L
N0 signal-sided noise power per hertz

Pr(+|+) channel transition probability
r N-tuple received vector
v N-tuple binary codeword of !C
!i log-likelihood ratio at position i

(!j ¼
D
In½Prðrjj0Þ=Prðrjj1Þ*)
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