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Abstract—The coding technique that combines channel es-
timation and error correction has received attention recently,
and has been regarded as a promising approach to counter the
effects of multipath fading. It has been shown by simulation that
a proper code design that jointly considers channel estimation
can improve the system performance subject to a fixed code rate
as compared to a conventional system which performs channel
estimation and error correction separately. Nevertheless, the
major obstacle that prevents the practice of such coding technique
is that the existing codes are mostly searched by computers, and
subsequently exhibit no apparent structure for efficient decoding.
Hence, the operation-intensive exhaustive search becomes the
only decoding option, and the decoding complexity increases
dramatically with codeword length. In this paper, a systematic
construction is derived for a class of structured codes that support
joint channel estimation and error correction. It is confirmed
by simulation that these codes have comparable performance to
the best simulated-annealing-based computer-searched codes.
Moreover, the systematically constructed codes can now be max-
imum-likelihoodly decoded with respect to the unknown-channel
criterion in terms of a newly derived recursive metric for use by
the priority-first search decoding algorithm. Thus, the decoding
complexity is significantly reduced as compared with that of an
exhaustive decoder.

Index Terms—Channel coding, fading channels, multipath chan-
nels, frequency-selective fading, maximum likelihood decoding, se-
quential decoding.

I. INTRODUCTION

C URRENTLY, a typical receiver in a wireless communica-
tion system performs channel estimation and data estima-

tion separately. The former task estimates channel characteris-
tics based on a known training sequence or pilot, while the latter
uses these characteristics to estimate the transmitted coded data.
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Recent research results [3], [6], [13], [14] have confirmed
that better system performance can be obtained by jointly per-
forming channel and data estimation, as compared to a typical
system that performs these tasks separately. In 1994, Seshadri
[13] proposed a blind maximum-likelihood sequence estimator
(MLSE) that performs the two tasks simultaneously. Skoglund
et al. [14] later provided a milestone evidence that a code de-
sign that jointly considers channel estimation and error correc-
tion is able to counter multipath block fading more efficiently
than the approach with a separate error-correcting code and
channel estimation scheme. They also applied the same idea to
a multiple-input multiple-output (MIMO) system as described
in a subsequent publication [6]. In short, Skoglund et al., by
computer search, identified nonlinear codes that support joint
channel estimation and error correction in a multipath block
fading channel. Through simulations, they found that a commu-
nication system using these nonlinear codes can outperform a
typical communication system with perfect channel estimation
by 2 dB. Their results hint that a single, perhaps nonlinear, code
may improve the transmission rate in a highly mobile environ-
ment in which traditional channel estimation becomes techni-
cally infeasible. A similar idea was also proposed by [3], and
the authors actually named such codes training codes.

One of the drawbacks of these joint estimation codes found by
computer search is that they lack a systematic structure, and can
therefore be decoded only by an operation-intensive exhaustive
search. This naturally leads to the research query of how to con-
struct an efficiently decodable code that supports joint channel
estimation and error correction.

In this paper, this query was resolved first by discovering that
regardless of the fading statistics, the codeword that maximizes
the system signal-to-noise ratio (SNR) must be orthogonal to
the delayed version of itself. We termed this property self-or-
thogonality. Second, we found that the code that consists of
properly chosen self-orthogonal codewords has a performance
comparable to that of the simulated-annealing-based computer-
searched code. Because the maximum-likelihood metrics for
self-orthogonal codewords can be equivalently transformed into
a recursively formulated metric, it is finally shown that these
structured codes can be maximum-likelihoodly decoded by the
priority-first search algorithm [2], [7], [9], [12], resulting in a
decoding complexity significantly smaller than that required by
exhaustive decoding.

The paper is organized as follows. Section II describes the
system model, followed by the technical background required
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for this work. Section III establishes the self-orthogonal code-
word-selection condition that optimizes the system SNR regard-
less of the fading statistics, and then uses it to construct codes for
joint channel and data estimation. The recursive maximum-like-
lihood decoding metrics for the constructed codes are derived
in Section IV. Simulations are summarized and discussed in
Section V. Section VI concludes the paper.

In this work, superscripts “ ” and “ ” are specifically re-
served for the matrix operations of Hermitian transpose and
transpose, respectively [8].

II. BACKGROUND

A. System Model and Maximum-Likelihood Decoding
Criterion

Suppose a codeword of an
code is transmitted over a block fading (specifically,
quasi-static fading) channel of memory order , where
each . Denote the channel coefficients by

, and assume that they are constant within a
coding block of length . By letting the codeword
matrix be

...
. . .

...
...

. . .

. . .
...

. . .
. . .

...

the complex-valued received vector is given by

(1)

where is zero-mean complex-Gaussian distributed with
, and is the identity matrix. We

then make the following assumptions: both transmitter and
receiver know nothing about the channel coefficients , but
have knowledge of the multipath parameter . Also, there are
adequate guard periods between consecutive encoding blocks
such that zero interblock interference is guaranteed. Based
on the system model in (1) and the above two assumptions,
the least square estimate of the channel coefficients for a
given (alternatively, ) equals , and the
joint maximum-likelihood (ML) decision for the transmitted
codeword becomes [1]

(2)

where . Note that the mapping from a
codeword to the corresponding transformed codeword is
not one-to-one unless is fixed. For convenience, we will al-
ways set for the codes we construct.1

1Under the setting, it is obvious that the largest code rate attainable by our
code design is �� � ���� .

B. Code Designs for Joint Channel and Data Estimation

In the literature, no systematic code constructions have been
proposed for joint channel and data estimation in quasi-static
fading channels. Efforts have mostly been invested in computer
searches for codes that counter channel fading [3], [6], [10],
[11], [14], [15], [17]. The decoding of such structureless com-
puter-searched codes thus becomes an engineering challenge.

In 2002, Skoglund et al. [14] relied on simulated annealing
to search for nonlinear binary block codes suitable for joint
channel and data estimation in quasi-static fading channels. As
optimization criterion, they used the sum of all pairwise error
probabilities (PEP) under equal prior probabilities. Although the
operating signal-to-noise ratio (SNR) for the code search was set
at 10 dB, their simulation results demonstrated that their codes
perform well under a wide range of SNRs. In addition, the mis-
match in the relative powers of different channel coefficients,
as well as in the channel Rice factors [16], has no big effect on
the resulting performance either. Their results indicate that the
nonlinear estimation codes can outperform a typical linear error
correcting code operated with a perfect channel estimator.

Later in 2005, Coskun and Chugg [3] replaced the PEP sum by
a properly defined pairwise distance measure between two code-
words, and proposed a suboptimal greedy algorithm to speed up
the code search process. In 2007, Giese and Skoglund [6] re-ap-
plied their original idea to single and multiple-antenna systems,
and used the asymptotic PEP and the generic gradient-search
algorithm, respectively, in place of the PEP and the simulated-
annealing algorithm in [14] to reduce system complexity.

In [14], the authors point out that “an important topic for fur-
ther research is to study how the decoding complexity of the
proposed scheme can be decreased.” Moreover, they state that
“one main issue is to investigate what kind of structure should
be enforced on the code to allow for simplified decoding.” Mo-
tivated by these remarks, we take here a different approach for
code design. Specifically, we establish a systematic code design
constraint for joint channel and data estimation in quasi-static
fading channels, and show that the codes constructed based on
this constraint can maximize the system SNR regardless of the
fading statistics. As it so happens that the computer-searched
codes in [14] also satisfy this constraint, their insensitivity to
SNR and channel mismatch now find a theoretical support.

Although a recursive metric had been derived in [1] from joint
maximum-likelihood decoding metric, however, there is no ef-
ficient decoding algorithm that can exploit it due to structure-
less code design. Taking advantage of the systematic structure
of our codes, we can then derive a recursive maximum-likeli-
hood decoding metric that can be used in the priority-first search
decoding algorithm. The decoding complexity is therefore sig-
nificantly decreased in contrast to that of the exhaustive decoder
required by the structureless computer-searched codes.

It is worth mentioning that although the codes selected by
computer search in [6] and [14] target unknown channels, for
which the channel coefficients are assumed constant within a
given coding block, the evaluation of the PEP criterion does
presume knowledge of the channel statistics. Even if the de-
pendence of the code design on channel statistics is relaxed in
[3], the pairwise distance criterion proposed therein is still for
computer search, and no systematic code design is resulted. The
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code constructed based on the algorithm we propose, however,
is guaranteed to achieve an acceptable system SNR regardless
of the statistics of the channel. This suggests that our systemati-
cally constructed codes are also suitable in cases where channel
blindness becomes a stringent system restriction.

C. The Maximum-Likelihood Priority-First Search Decoding
Algorithm

A code tree of an binary code represents every code-
word as a path on a binary tree. Each branch on the code tree
is labeled with the appropriate code bit . We can then denote
the path ending at a node at level by the sequence of branch
labels it traverses. For convenience, we abbre-
viate as , and will drop the subscript when

. The successor paths of a path are those whose first
labels are exactly the same as .
The priority-first search algorithm (also known as the best-

first search algorithm) is a common graph search algorithm that
explores a graph by expanding the most promising path selected
according to some criterion. Examples are Algorithm [12],
Dijkstra’s Algorithm [2], or Stack Algorithm [9]. In implemen-
tation, the most promising path is usually drawn from a list of
candidates in a stack or a priority queue. One of the main distinc-
tions among the family of priority-first search algorithms is the
metric associated with paths on the search graph.2 By adopting
different metrics, some algorithms guarantee optimal search re-
sults, while some can only yield suboptimal ones. A typical pri-
ority-first search algorithm is exemplified by the following se-
quence of operations.
Step 1. Load the stack with the path that ends at the original

node.
Step 2. Evaluate the metric values of the successor paths of

the current top path in the stack. Then delete this top
path from the stack.

Step 3. Insert the successor paths obtained in Step 2 into the
stack such that the paths in the stack are ordered
according to their ascending metric values.

Step 4. If the top path in the stack ends at a terminal node in
the code tree, output the labels corresponding to the
top path, and the algorithm stops; otherwise, go to
Step 2.

Next, we give a sufficient condition under which the above
priority-first search algorithm is guaranteed to locate the path
with the smallest metric among all paths.

Lemma 1: If the metric is nondecreasing along every path
in the code tree, i.e.

(3)

then the priority-first search algorithm always yields the code
path with the smallest metric value among all code paths of .

Proof: Let be the first top path that reaches a terminal
node (andhence, is theoutputcodepathof thepriority-first search

2In the optimization literature, this metric is sometimes called evaluation
function. Since we apply the algorithm in decoding, we adopt the term metric
in this work.

algorithm.) Then, Step 3 of the algorithm ensures that is
no larger than the metric value of any path currently in the stack.
Since condition (3) guarantees that the metric value of any other
code path, which should be the offspring of some path cur-
rently existing in the stack, is no less than , we have

Consequently, the lemma follows.

When defining a metric , it is convenient to represent it as
the sum of two components

The first component is directly defined based on the max-
imum-likelihood metric such that

After is defined, the second component is designed to val-
idate (3) with for any . Then from

for all , the desired maximum-likeli-
hood priority-first search decoding algorithm is established. A
typical interpretation of the so-called heuristic function is that
it helps predict a future route from the end node of the current
path to a terminal node [7]. Notably, the design of the heuristic
function that validates (3) is not unique. Different designs may
result in variations in computational complexity.

III. CODE CONSTRUCTION

A. Code Constraint That Maximizes the Average SNR
Regardless of Channel Statistics

From the system model in (1), it can be derived that the av-
erage SNR conditional on the input satisfies

(4)

Since both transmitter and receiver know nothing about the
channel coefficients , the average SNR can be as worse as

where is a certain (possibly unknown) power level on the
channel coefficients . We then found that such a worst-case
SNR can be upper-bounded by a constant, i.e.

where the above inequality holds since an upper bound can be
resulted by taking any that satisfies into

, and here we take to be zero-mean

i.i.d. with . It is thus straightforward from (4)
that this constant SNR bound can be achieved even if the system
is totally blind on channel coefficients (as well as the power
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level ), when the codeword is designed to be self-orthogonal
in the sense that

(5)

Condition (5) actually has an operational meaning. It ensures
that every codeword is orthogonal to the shifted version of it-
self, and hence temporal diversity can be implicitly realized
even under completely no knowledge on channel statistics. We
henceforth say that codewords constrained on (5) maximize the
average SNR attainable regardless of the statistics of [5].

Unfortunately, a codeword sequence satisfying (5) is only
guaranteed to exist for with odd (and trivially, for

). In some other cases, such as , one can only de-
sign codes to approximately satisfy (5). For example

for even

and

for odd

We therefore relax (5) and allow some off-diagonal entries in
to be either or 1 whenever it is impossible to strictly

satisfy (5). We will denote such a matrix as .
After the establishment of (5), we find that this particular

structure of can really be observed in the simulated-an-
nealing-based computer-searched codes. Specifically, for

and even, the best computer-searched half-rate
codes that minimize the sum of PEPs under complex zero-mean
Gaussian distributed with and all
satisfy the relation

(6)

We have also obtained and examined the computer-searched
code used in [14] for , and found as anticipated that
every codeword satisfies (6).

We close this subsection by stating some existing results in
the literature that correspond to condition (5). The authors in
[4] suggest that for an optimal channel estimation, the training
sequences can be chosen such that is proportional to .
Their observation agrees with what we obtained in (5). More-
over, condition (5) also has been identified in [6] where the au-
thors remark ([6, p. 1591]) that a code sequence with a certain
aperiodic autocorrelation property possibly could be exploited
in future code design approaches. This is indeed one of the main
research goals of this paper.

B. Equivalent System Model for Joint Channel and Data
Estimation

By noting that is idempotent and symmetric, and both
and equal , where denotes the op-

eration to transform a matrix into a vector,3the joint ML decision
in (2) can be reformulated as

(7)

This implies that the ML decision can be obtained by finding the
codeword whose Euclidean distance to is the smallest.
We can then bound the ML error probability by

(8)

where is the th codeword of an block code, and
denotes the equivalent th codeword in the -domain. By the
self-orthogonal property, . The
PEP-based upper bound in (8) then suggests that a good self-or-
thogonal code design should have an adequately large pairwise
Euclidean distance

(9)

between all codeword pairs and , where is the equiva-
lent th codeword in the -domain. Based on this observation,
we may infer under equal prior probabilities that a uniform draw
of codewords satisfying may asymptotically re-
sult in a good code. This is conceptually equivalent to a uniform
pick of codewords in a set of self-orthogonal binary sequences.

We recall that our initial research query is how to construct
an efficiently decodable code that supports joint channel esti-
mation and error correction. In order to achieve this goal for the
priority-first search decoding algorithm, we need an efficient
and systematic way to generate the successor paths of the top
path. In particular, we would like to have a code tree that can be
spanned in an on-the-fly or bit-by-bit fashion. The uniform pick
principle then suggests that considering only the self-orthogonal
sequences with the same prefix , the ratio of the number of
self-orthogonal codewords satisfying to the number of
all self-orthogonal sequences having the same must be made
equal to the similar ratio for self-orthogonal codewords satis-
fying , whenever possible. Mathematically, this can be
expressed as

(10)

3For an � �� matrix � ���� � is defined as

���� � � �� � � � � � � � � � � � � � � 	 �
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where is the set of all codewords whose first bits
equal , and is the set of all binary
sequences of length , whose first bits equal ,
and whose -representation satisfies . Accordingly,
given the index of the codeword, where ,
and given the previous bits , whether
the next code bit is or can be determined con-
ceptually by checking whether is less than or larger than

. A specific code design algorithm will
be given in the next subsection.

C. Exemplified Code Design Algorithm for Channels of
Memory Order One

In this subsection, we provide an exemplified code design
algorithm based on the uniform pick principle for channels of
memory order 1, namely, . The code design algorithm for
channels with higher memory order can be similarly built.

For , we define

Note that when cannot be satisfied as
aforementioned for even, and will be used instead
to define the relaxed self-orthogonal codewords. In such case,
the uniform pick principle again suggests that half of the code-
words should be uniformly drawn from binary sequences satis-
fying , and the other half of codewords are selected
according to . The proposed codeword selection
process is simply to list all the sequences satisfying the desired
self-orthogonal property in binary-alphabetical order, starting
from zero, and uniformly pick the codewords from the ordered
list in every interval with

for (11)

where for odd, and for even. As a
result, the selected codewords are those sequences with indices
closest to for . The
codeword mapping algorithm is summarized by the following
list.
Step 1. Input the index of the requested codeword in the

block code, where .
Step 2. Set for odd, and for

even. Also, set
. Compute according

to (11). Initialize and
. Let the minimum

sequence index .
Step 3. Execute , and compute

.
If , then choose the next code bit

;
otherwise choose the next code bit , and
readjust .

Step 4. If , output the corresponding codeword , and
the algorithm stops; otherwise, go to Step 3.

In implementing the above algorithm, it is perhaps more con-
venient to calculate recursively4 such that the codeword map-
ping can be performed in an on-the-fly or bit-by-bit systematic
fashion with respect to the given codeword index . This recur-
sive nature also facilitates the priority-first decoding search at
the receiver, since branches of the code tree will only be spanned
when necessary.

IV. MAXIMUM-LIKELIHOOD METRICS FOR PRIORITY-FIRST

SEARCH DECODING

In this section, we will establish two different metric func-
tions to be used by the priority-first search algorithm. The first
metric is

(12)

where is derived in Section IV-A, and is
the all-zero function (cf. Section IV-B). The second metric is

(13)

with the same as in , and with defined in
Section IV-C. Both metrics will lead to an ML decoding. The
difference is that can be computed on-the-fly, and will there-
fore cause much less delay in the decoding. For the evaluation
of , however, one needs to know all received symbols, but
the computational complexity of is one order of magnitude
less than that of .

A. Recursive Maximum-Likelihood Metric

Let subcode be the set of codewords that satisfy
, where takes value in . Hence, , and

whenever . Since a transmitted codeword be-
longs to only one of the subcodes, to maintain individual stacks
for priority-first codeword searching over each subcode will in-
troduce considerable unnecessary decoding burden, especially
for the subcodes that the transmitted codeword does not belong
to. Hence, only one stack is maintained during the entire pri-
ority-first search, and the metric function values for different
subcodes are compared and sorted in the same stack. The path

4Initializing � � ��� � � and � � ���� � ��, and setting � �
� � � � for � � � � � , we obtain for 	 � � that if �� � � � �
� � �, and �� � � � � ���� ���

� � � �
�

��� � ��
�

�� � ��� � � �

� � ��� � �

�� ��� � �� � � � �� ��

where �� � � is the set indicator function. If �� � � � � � � �, but
�� � � � �� ������, then

� � � �
�

��� � ��
� �� � ��� � �� � � � � �

�� ��� � � � � � � � � � �� �� 


If however �� � � � � � � �, then

� �

�� for �� � � � �� ������

or ��� � � � � ������ and � �� �� � �� ��

�� otherwise.
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to be expanded next is therefore the one whose metric function
value is the smallest globally.

By denoting , and letting the matrix
entry of be , we can continue the derivation from (7) as
follows:

where for convenience, we put for . After ad-
justing indices, the derivation can be resumed as

(14)

where

As the maximum-likelihood decision remains unchanged by
adding a constant that is independent of the codeword , we
add a constant to make the decision criterion nonnegative5:

It remains to prove that the metric of

5Here, a nonnegative maximum-likelihood criterion makes possible the later
definition of path metric ����� � to be nondecreasing along any path in the code
tree. It can then be anticipated (cf. Section IV-B) that letting the heuristic func-
tion be zero for all paths in the code tree suffices to result in a metric function
satisfying the condition (3) in Lemma 1.

Note that the additive constant that makes the metric function nondecreasing
along any path in the code tree can also be obtained by first defining � based
on (14), and then determining its respective � according to (3). Such an ap-
proach however complicates the determination of the heuristic function � when
we additionally require the metric function to be recursive-computable. The al-
ternative approach that directly defines a recursive-computable � based on a
nonnegative maximum-likelihood criterion is accordingly adopted in this work.

can be computed recursively. To that aim, we define for every
path over code tree f

Then, by for every and ,
we have for

where

(15)

and for

This shows that we can recursively compute
and from the previous and

using and , and
setting as initial condition for

.
A final remark in this discussion is that although the compu-

tational burden of in (15) increases linearly with , such a
linearly increasing burden can be moderately compensated for
by the fact that it is only necessary to compute once for
each and , because it can be shared for all paths ending at
level over the code tree .

B. Heuristic Function

We next derive the first heuristic function that validates (3).
Taking the maximum-likelihood metric into the sufficient con-
dition in (3) yields
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Fig. 1. The maximum-likelihood word error rates (WERs) of the computer-searched half-rate code by simulated annealing in [14] (SA-22), the constructed half-
rate code with double code trees (Double-22), and the constructed half-rate code with single code tree (Single-22). The codeword length is � � ��.

Hence, in addition to , the heuristic function should
satisfy

(16)

It is apparent that the all-zero function is the largest one
that satisfies this inequality subject to no dependence on
the future route and future receptions, i.e., and

. Hence, we choose .
Note that is trivially on-the-fly computable, and hence

so is . In comparison with the exhaustive-search decoding,
decoding based on recursive priority-first search shows a sig-
nificant decrease in computational complexity especially at
medium-to-high SNRs.

C. Heuristic Function

If we drop the requirement that the metric must be inde-
pendence of future receptions, we can further reduce the com-
putational complexity. Upon reception of all , the

heuristic function that satisfies (16) regardless of ,
can be increased to

(17)

where for and

with initial conditions , and

. Simulations show that compared to the
zero-heuristic function , the heuristic function in (17)
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Fig. 2. The maximum-likelihood word error rates (WERs) of the computer-searched code by simulated annealing (SA-� ) and the constructed half-rate code with
double code trees (Double-� ).

further reduces the number of path expansions during the
decoding process up to one order of magnitude (cf. Table I).

V. SIMULATION RESULTS

In this section, we examine the performance of the codes pro-
posed in Section III. We also illustrate the decoding complexity
of the maximum-likelihood priority-first search decoding algo-
rithm presented in the previous section. For ease of comparison,
the channel parameters used in our simulations follow those in
[14], where is zero-mean complex-Gaussian distributed with

and . The average system SNR is,
thus, given by

(18)

since for all simulated codewords.6

6The authors in [14] directly define the channel SNR as ��� . It is apparent
that their definition is exactly the limit of (18) as � approaches infinity.

Since it is assumed that an adequate guard period between two encoding
blocks exists (so that there is no interference between two consecutive decoding
blocks), the computation of the system SNR for finite � should be adjusted to
account for this muting (but still part-of-the-decoding-block) guard period. For
example, in comparison of the ��� �� and ���� ��� codes over channels with
memory order 1 (i.e., � � �), one can easily observe that the former can only
transmit 18 code bits in the time interval of 21 code bits, while the latter pushes
out up to 20 code bits in the period of the same duration. Thus, under fixed code
bit transmission power and fixed component noise power � , it is reasonable
for the ������� code to result in a higher SNR than the ����� code.

Fig. 1 illustrates the simulation results of three codes: the
computer-searched half-rate code obtained by the simulated an-
nealing algorithm in [14] (SA-22), the constructed double-tree
code with half of the codewords satisfying and the
remaining half satisfying (Double-22), and the con-
structed single-tree code whose codewords are all selected from
the candidate sequences satisfying (Single-22).
We observe from Fig. 1 that the Double-22 code performs al-
most the same as the SA-22 code. Actually, the simulations il-
lustrated in Fig. 2 provide evidence that the performance of the
constructed double-tree half-rate codes is as good as the com-
puter-searched half-rate codes for all . However, when

, the Double- code performs slightly worse than the
SA- code. This is because for the approximation in
(10) can no longer be well maintained due to the restriction that

must be an integer.
In addition to the Double-22 code, Fig. 1 also depicts simula-

tion results of the Single-22 code. Since the pairwise codeword
distance in the sense of (9) for the Single-22 code is in general
smaller than that of the Double-22 code, its performance has a
0.2 dB degradation compared with that of the Double-22 code.
However, we will see in Fig. 3 that the Single-22 code actually
has the smallest decoding complexity among the three codes.
This suggests that to select codewords uniformly from a single
code tree should not be ruled out as a candidate design, espe-
cially when the decoding complexity becomes the main system
concern.

Authorized licensed use limited to: National Chiao Tung University. Downloaded on August 31, 2009 at 17:15 from IEEE Xplore.  Restrictions apply. 



WU et al.: COMBINED CHANNEL ESTIMATION AND ERROR CORRECTION 4199

Fig. 3. The average numbers of node expansions per information bit for the simulated-annealing-based computer-searched code in [14] by exhaustive decoding
(EXH-SA-22), and the constructed single-tree (SEQ-Single-22) and double-tree (SEQ-Double-22) codes using the priority-first search decoding guided by either
metric function � or metric function � .

Fig. 4. BERs for the simulation of codes illustrated in Fig. 1.

Authorized licensed use limited to: National Chiao Tung University. Downloaded on August 31, 2009 at 17:15 from IEEE Xplore.  Restrictions apply. 



4200 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009

Fig. 5. WERs for the codes of Single-22, Double-22, Single-26, Double-26, Single-30, and Double-30.

In Fig. 3, the average numbers of node expansions per infor-
mation bit are illustrated for the codes examined in Fig. 1. Since
the number of node expansions is exactly equal to the number
of tree branch metrics (i.e., one recursion of -function values)
computed, the equivalent complexity of exhaustive decoding is
correspondingly plotted. It can then be observed that in com-
parison with the exhaustive decoder, a significant reduction in
computational burden is achieved at moderate-to-high SNRs by
adopting the Double-22 code and the priority-first search de-
coder with on-the-fly computable metric [see (12)]. Further
reduction can be achieved if the Double-22 code is replaced with
the Single-22 code. This is because performing the sequential
search over multiple code trees introduces extra node expan-
sions for those code trees that the transmitted codeword does
not belong to. An additional order-of-magnitude reduction in
node expansions can be achieved when the metric
[see (13)] is used instead.

The authors in [3] and [14] only focus on the word error rate
(WER). No bit error rate (BER) performances that involve the
mapping design between the information bit patterns and the
codewords are presented. Yet, in certain applications, such as
voice transmission and digital radio broadcasting, the BER is
generally considered a more critical performance index. In ad-
dition, the adoption of the BER performance index, as well as
the signal-to-noise ratio per information bit, facilitates the com-
parison of codes of different code rates.

Fig. 4 depicts the BER performance of the same codes whose
WER performances were depicted in Fig. 1. The corresponding

is computed according to , where

is the code rate. The mapping between the bit pat-
terns and the codewords of the given computer-searched code is
obtained through simulated annealing by minimizing the upper
bound of

BER transmitted

where, other than the notations defined in (8), is the in-
formation sequence corresponding to the th codeword, and

is the Hamming distance. For the constructed codes of
Section III-C, the binary representation of the index of the re-
quested codeword in Step 1 is directly taken as the information
bit pattern corresponding to the requested codeword. The result
illustrated in Fig. 4 then indicates that the BER performance
of the three curves are almost the same. Hence we conclude
that taking the binary representation of the requested codeword
index as the information bit pattern for the constructed code not
only makes its implementation easy, but also yields a BER per-
formance similar to that of the best simulated-annealing-based
computer-searched codes.

Last, we demonstrate the WER and BER performances, re-
spectively, of Single-26, Double-26, Single-30, and Double-30
codes, together with those of Single-22 and Double-22 codes,
over the quasi-static fading channels in Figs. 5 and 6. Both
figures show that the Double-30 code has the best maximum-
likelihood performance not only in WER but also in BER. This
result concurs with the intuition that a longer code will perform
better provided that the channel coefficients remain unchanged
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Fig. 6. BERs for the codes of Single-22, Double-22, Single-26, Double-26, Single-30, and Double-30.

TABLE I
AVERAGE NUMBER OF NODE EXPANSIONS PER INFORMATION BIT FOR THE PRIORITY-FIRST SEARCH DECODING OF THE CONSTRUCTED HALF-RATE CODES OF

LENGTH 22, 26, AND 30

in a coding block. The decoding complexities of the codes are
listed in Table I, from which we observe that the saving of de-
coding complexity of metric with respect to metric in-
creases as the codeword length increases. It is worth mentioning
that at very high SNR, the priority-first search decoding over
the AWGN channels will directly go all the way down to the
terminal nodes, and result in a decoding complexity of approx-
imately two node expansions per information bit. However, for

fading channels, the decoding complexity cannot reach the ideal
two node expansions per information bit even with zero additive
noise, as shown in the last column of Table I. In this regard,
metric still reaches a better ultimate decoding complexity
than metric .

We close this section by commenting on the attained diver-
sity level of the simulated codes. The diversity level serves
as approximation of the word error probability at high SNR, i.e.,
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TABLE II
THE ATTAINED DIVERSITY LEVELS OF CODES, WHICH ARE LEAST-SQUARE-APPROXIMATED BASED ON WER PERFORMANCE CURVES WITHIN 8–15 dB

. From Table II, we observe that the attained di-
versities of codes of length are around , which is close
to the anticipated value of . The tables also suggest that
the diversities degrade at small , and the computer-searched
codes have somewhat higher diversities within the considered
SNR range. We conclude that under the constraint of the self-or-
thogonal structure, the simulated codes can turn the second de-
layed channel path into another diversity. This results in a blind
detection performance of diversity level close to .

VI. CONCLUSION

In this paper, we introduce an algorithm to construct codes
that allow joint channel estimation and error correction at the
receiver side of a block fading channel. In contrast with previ-
ously published codes, our codes are designed systematically
and allow for an ML decoding with a much smaller compu-
tational complexity than the operation-intensive exhaustive de-
coding that was previously used in [3], [6], [14] to decode the
structureless computer-searched codes. The given algorithm is
based on the optimal signal-to-noise ratio framework and re-
quires every codeword to satisfy a self-orthogonal property that
helps to counter the effects of multipath fading.

The improved decoding algorithm is a tree-based priority-
first search decoding algorithm that uses a recursive maximum-
likelihood metric. Simulations demonstrate that the constructed
codes have almost identical performance as the best computer-
searched codes, but with much smaller decoding complexity.

Moreover, we propose two different maximum-likelihood
decoding metrics. The first one can be used in an on-the-fly
fashion, while the second one that results in a much lower
decoding complexity requires the knowledge of all channel out-
puts. We hence have a tradeoff between decoding complexity
versus decoding delay.

Note that so far we have ignored an implicit problem of
codes that absorb the training sequence into the error-cor-
recting codewords: in traditional packet-switched systems,
frame synchronization is often achieved by the same training
sequence. Without synchronizing the codeword margins, de-
coding may become technically infeasible. Nevertheless, there
are recent standards starting to consider to partly separate the
tasks of frame synchronization and channel estimation. For
example, in IEEE 802.16e, initial frame synchronization is
performed by means of a preamble, and is later shared by
all users. Pilots are then added amid user data for individual
channel estimation during data transmission [18]. It is then
fair to say that at this stage, the joint channel estimation and
error correction codes may only fit well in an initial-sync, or
circuit-switched, or TDD-based system environment. It will
be an interesting, but quite challenging, future task to further

enhance the proposed codes to possess self-synchronization
capability.
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