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Abstract—In [6], Csiszár established the concept of forward -cutoff
rate for the error exponent hypothesis testing problem based on indepen-
dent and identically distributed (i.i.d.) observations. Given 0, he
defined the forward -cutoff rate as the number 0 that provides
the best possible lower bound in the form ( ) to the type 1
error exponent function for hypothesis testing where 0
is the rate of exponential convergence to 0 of the type 2 error proba-
bility. He then demonstrated that the forward -cutoff rate is given by

( � ), where ( � ) denotes the Rényi -divergence
[19], 0, = 1. Similarly, for 0 1, Csiszár also established
the concept of reverse -cutoff rate for the correct exponent hypothesis
testing problem.
In this work, we extend Csiszár’s results by investigating the forward

and reverse -cutoff rates for the hypothesis testing between two arbi-
trary sources with memory. We demonstrate that the lim inf Rényi -di-
vergence rate provides the expression for the forward -cutoff rate. We
also show that if the log-likelihood large deviation spectrum admits a limit,
then the reverse -cutoff rate equals the liminf -divergence rate, where

= and 0 , where is the largest 1 for
which the lim inf -divergence rate is finite. For 1, we
show that the reverse cutoff rate is in general only upper-bounded by the
lim inf Rényi divergence rate. Unlike in [4], where the alphabet for the
source coding cutoff rate problem was assumed to be finite, we assume ar-
bitrary (countable or continuous) source alphabet. We also provide several
examples to illustrate our forward and reverse -cutoff rates results and
the techniques employed to establish them.

Index Terms— -divergence rate, arbitrary sources with memory, for-
ward and reverse cutoff rates, hypothesis testing error and correct expo-
nents, information spectrum, large deviation theory.

I. INTRODUCTION

In [6], Csiszár established the concept of forward �-cutoff rate for
the hypothesis testing problem based on independent and identically
distributed (i.i.d.) observations. Given � < 0, he defined the forward
�-cutoff rate as the number R0 � 0 that provides the best possible
lower bound in the form �(E�R0) to the type 1 error exponent func-
tion for hypothesis testing where 0 < E < R0 is the rate of exponen-
tial convergence to 0 of the type 2 error probability. He then demon-
strated that the forward �-cutoff rate is given by D1=(1��)(Xk �X),
where D�(Xk �X) denotes Rényi’s �-divergence, � > 0, � 6= 1 [19].

Manuscript received September 3, 2002; revised September 2, 2003. This
work was supported in part by the Natural Sciences Engineering Research
Council of Canada, the Premier’s Research Excellence Award of Ontario, and
the National Science Council of Taiwan. The material in this correspondence
was presented in part at the 2002 (Lausanne, Switzerland) and 2003 (Yoko-
hama, Japan) IEEE International Symposia on Information Theory.

F. Alajaji is with the Department of Mathematics and Statistics, Queens Uni-
versity, Kingston, ON K7L 3N6, Canada.

P. -N. Chen is with the Department of Communication Engineering, National
Chiao-Tung University, Hsin Chu, Taiwan 30050, R.O.C.

Z. Rached was with the Department of Mathematics and Statistics, Queens
University, Kingston, ON K7L 3N6, Canada. He is now with the Department of
Mathematics and Statistics, Notre Dame University, Zouk Mosbeh, Keserouan,
P. O. Box 72, Zouk Mikael, Lebanon.

Communicated by P. Narayan, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2004.825040

Csiszár also established the concept of reverse �-cutoff rate for the hy-
pothesis testing problem based on i.i.d. observations. Given � > 0,
he defined the reverse �-cutoff rate as the number R0 � 0 that yields
the best possible lower bound in the form �(E � R0) to the hypoth-
esis testing type 1 correct exponent (or reliability) function where 0 <
R0 < E is the rate of exponential convergence to 0 of the type 2 error
probability. He then showed that the reverse �-cutoff rate is equal to
D1=(1��)(Xk �X). These results provide a new operational significance
for the �-divergence.

The error exponent for the binary hypothesis testing problem has
been thoroughly studied for finite-state i.i.d. sources and Markov
sources. The results for i.i.d. sources can be found in [7], [10], [12],
and for irreducible Markov sources in [1], [15]. The error exponent for
testing between ergodic Markov sources with continuous state–space
under certain additional restrictions was established in [13]. In its
full generality, i.e., for arbitrary sources (not necessarily, stationary,
ergodic, etc.), the error exponent was studied in [5], [8], [9], [14], and
[11]. Specifically, in [8], [9], Han established expressions for the type
2 error and correct exponents. While Han’s error exponent formula
holds in full generality, his reverse exponent characterization requires
some technical assumptions on the log-likelihood large-deviation
spectrum. In [14], Nagaoka and Hayashi generalized Han’s results in
the larger quantum hypothesis testing setting and without requiring
any conditions. Recently, Iriyama [11] revisited Han’s results without
imposing any asumptions and provided alternative expressions for
the type 2 error and correct exponents in terms of the spectral
inf = sup-divergence rates.

In the sequel, we extend Csiszár’s results by investigating the for-
ward and reverse �-cutoff rates for the hypothesis testing between two
arbitrary sources with memory. We demonstrate that the lim inf Rényi
�-divergence rate provides the expression for the forward �-cutoff rate.
Our proof relies in part on the formulas established in [8], and consid-
erable extensions of the techniques used in [4] that generalize Csiszár’s
source coding cutoff rate results for arbitrary discrete sources with
memory. Unlike in [4], where the source alphabet was assumed to be
finite, we assume arbitrary (countable or continuous) source alphabet.
The methods used in our proof are a mixture of the techniques used in
deriving the forward and reverse �-cutoff rates for source coding [4].
However, some new techniques are also needed to obtain our result.

We also investigate the reverse �-cutoff rate problem for arbitrary
sources with memory. We show that if the log-likelihood ratio large-
deviation spectrum �(R) admits a limit, then the lim inf �-divergence
rate with � = 1

1��
provides the expression for the reverse �-cutoff

rate for 0 < � < �max, where �max is the largest � < 1 for which the
lim inf 1

1��
-divergence rate is finite. We also observe (via an example),

that if the limit of �(R) does not hold, the reverse cutoff rate may not
equal the lim inf Rényi divergence rate in general. For �max � � < 1,
we show that the reverse �-cutoff rate is in general only upper-bounded
by the lim inf Rényi divergence rate.

The rest of the paper is organized as follows. In Section II, we briefly
recall previous results by Han [8] on the general expression for the
Neyman–Pearson type 2 error subject to an exponential bound on the
type 1 error. In Section III, we establish the formula for the forward
�-cutoff rate, and we illustrate it via some examples in Section IV. In
Section V, we recall the general expression for the reliability function
of the type 2 probability of correct decoding [8] and formulate the re-
verse �-cutoff rate problem by carefully examining the inconsistency
of definitions between [6] and [8]. In Section VI, we investigate the
reverse �-cutoff rate, and in Section VII, we illustrate it with some ex-
amples. Finally, we conclude in Section VIII.
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II. HYPOTHESIS TESTING ERROR EXPONENT

Let us first define the general source as an infinite sequence

XXX = fXng1n=1 X
n = X

(n)
1 ; . . . ; X(n)

n

1

n=1

ofn-dimensional random variablesXn where each component random
variable X(n)

i
(1 � i � n) takes values in an arbitrary (countable or

continuous) setX that we call the source alphabet. Given two arbitrary
sources XXX = fXng1n=1 and �XXX = f �Xng1n=1 taking values in the
same source alphabet fXng1n=1, we may define the general hypothesis
testing problem withXXX = fXng1n=1 as the null hypothesis and �XXX =
f �Xng1n=1 as the alternative hypothesis.

Let An be any subset of Xn, n = 1; 2; . . . ; that we call the accep-
tance region of the hypothesis testing, and define

�n PrfXn 62 Ang and �n Prf �Xn 2 Ang

where �n, �n are called type 1 error probability and type 2 error prob-
ability, respectively.

Definition 1 [6]: FixE > 0. A rate r is calledE-achievable if there
exists a sequence of acceptance regions An such that

lim inf
n!1

�
1

n
log�n � r and lim inf

n!1
�
1

n
log �n � E:

Definition 2 [6]: The supremum of all E-achievable rates is de-
noted by De(EjXXXk �XXX)

De(EjXXXk �XXX) supfr > 0 : r is E-achievableg

andDe(EjXXXk �XXX) = 0 if the above set is empty (which is a degenerate
uninteresting case). The dual of the function De(EjXXXk �XXX) is defined
as

Be(rjXXXk �XXX) supfE > 0 : E is r-achievableg

and Be(rjXXXk �XXX) = 0 if the above set is empty.

Proposition 1 [8]: Fix r > 0. For the general hypothesis testing
problem, we have that

Be(rjXXXk �XXX) = inf
R2

fR+ �(R) : �(R) < rg

where1

�(R) lim inf
n!1

�
1

n
logPX x

n 2 Xn :
1

n
log

PX (xn)

P �X (xn)
� R

is the large deviation spectrum of the normalized log-likelihood ratio.

For the sake of simplicity, we assume throughout that the source al-
phabet is countable. However, we will point out the necessary modifi-
cations in the proofs for the case of a continuous alphabet. Proposition 1
is the main tool for our key lemma in Section III.

III. FORWARD �-CUTOFF RATE FOR ARBITRARY SOURCES

Definition 3 [6]: Fix � < 0.R0 � 0 is a forward �-achievable rate
for the general hypothesis testing problem if

De(EjXXXk �XXX) � �(E �R0)

for every E > 0, or equivalently

Be(rjXXXk �XXX) � R0 +
r

�

1If the source alphabetX is continuous, then P (X ) plays the role of the
density function f (X ), when it exists.

Fig. 1. A graphical illustration of the forward �-cutoff rate, R (�jXXXj �XXX),
for testing between two arbitrary sourcesXXX and �XXX .

for every r > 0. The forward �-cutoff rate is defined as the supremum
of all forward �-achievable rates, and is denoted by R(f)

0 (�jXXXk �XXX).
Note that in the degenerate case whereDe(EjXXXk �XXX) is identically 0,

we have thatR(f)
0 (�jXXXk �XXX) = 0. We herein assume thatDe(EjXXXk �XXX)

is not 0 for all values of E. A graphical illustration of the forward
�-cutoff rate R(f)

0 (�jXXXk �XXX) for testing between two arbitrary sources
XXX and �XXX is given in Fig. 1.

Before stating ourmain result, we first observe in the next lemma that
the forward �-cutoff rateR(f)

0 (�jXXXk �XXX) is indeed theR-axis intercept
of a support line of slope �

1��
to the large deviation spectrum �(R).

Lemma 1: Fix � < 0. The following conditions are equivalent:

(8 R 2 ) �(R) �
�

� � 1
(R0 �R) (1)

and

(8 r > 0) Be(rjXXXk �XXX) � R0 +
r

�
: (2)

Proof:

a) Equation (1) )(2). For any r > 0, we obtain by Proposition 1
that

(8 � > 0)(9R� with �(R�) < r)

Be(rjXXXk �XXX) + � � R� + �(R�):

Therefore,

Be(rjXXXk �XXX) �R� + �(R�)� �

�R� � � +
�

� � 1
(R0 �R�) (3)

= � � +
�

� � 1
R0 �

R�

� � 1

� � � +
�

� � 1
R0 �

R0

� � 1
+
r

�
(4)

=
r

�
+R0 � � (5)

where (3) follows from (1), and (4) holds because

r > �(R�) �
�

� � 1
(R0 �R�):

Since � can be made arbitrarily small, the proof of the forward
part is completed.
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b) Equation (2))(1). Inequality (1) holds trivially for those R sat-
isfying �(R) = 1. For any R 2 with �(R) < 1, let
r� �(R) + � for some � > 0. Then (by Proposition 1)

Be(r�jXXXk �XXX) � R+ �(R):

Therefore,

�(R) �Be(r�jXXXk �XXX)�R

�R0 +
r�

�
�R

=R0 +
�(R)

�
+

�

�
�R (6)

where (6) follows by (2). Thus,

�(R) �
�

� � 1
(R0 �R) +

�

� � 1
:

Since � can be made arbitrarily small, the proof of the converse
part is completed.

Theorem 1 (Forward �-Cutoff Rate Formula): Fix � < 0. For the
general hypothesis testing problem

R
(f)
0 (�jXXXk �XXX) = lim inf

n!1

1

n
D (Xnk �Xn)

where

D�(X
nk �Xn)

1

�� 1
log

x 2X

[PX (xn)]�[P �X (xn)]1��

is the n-dimensional �-divergence.2

Proof: Note that �(R) > 0 for some3R 2 .
1) Forward part:

R
(f)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D (Xnk �Xn):

By the equivalence of conditions (1) and (2), it suffices to show that

(8 R 2 ) �(R) �
�

� � 1
lim inf
n!1

1

n
D (Xnk �Xn)�R :

Indeed, we have the following:

Pr
1

n
log

PX (Xn)

P �X (Xn)
� R

= Pr e
�t log

� e
�ntR

; for t > 0

� e
ntR

x 2X

[PX (xn)]1�t[P �X (xn)]t (7)

= exp �nt
1

n
D1�t(X

nk �Xn)�R

for 0 < t < 1, where (7) follows by Markov’s inequality. Therefore,

�(R) � t lim inf
n!1

1

n
D1�t(X

nk �Xn)�R

=
�

� � 1
lim inf
n!1

1

n
D (Xnk �Xn)�R ;

for �
t

t� 1
< 0:

2) Converse part:

R
(f)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D (Xnk �Xn):

2If the source alphabet is continuous, and it admits densities under X and
�X , then the n-dimensional �-divergence is given by

D�(X
nk �Xn)

1

�� 1
log [fX (xn)]�[f �X (xn)]1��dxn :

3If �(R) = 0 for all R 2 , then

Be(rjXXXk �XXX) = inf
R2

fR+ �(R)j�(R) < rg = inf
R2

fRg = �1

contradicting that B (rjXXXk �XXX) is, by definition, an exponent and should be
always nonnegative.

The converse holds trivially if

lim inf
n!1

1

n
D (Xnk �Xn)

is infinite. Hence we can assume that

lim inf
n!1

1

n
D (Xnk �Xn) < K

where K is some constant. By the equivalence of conditions (1) and
(2), it suffices to show that for any � > 0 arbitrarily small, there exists
R = R(�) 2 such that

�(R) �
�

� � 1
3� + lim inf

n!1

1

n
D (Xnk �Xn)�R :

Consider the twisted distribution defined as

P
(t)
X (xn)

[P �X (xn)]t[PX (xn)]1�t

x̂ 2X

[P �X (x̂n)]t[PX (x̂n)]1�t

=exp t log
P �X (xn)

PX (xn)
+D1�t(X

nk �Xn) PX (xn)

(8)

where t = �=(� � 1). Note that 0 < t < 1. LetN be a set of positive
integers such that

lim
n2N ;n!1

1

n
D1=(1��)(X

nk �Xn) = lim inf
n!1

1

n
D1=(1��)(X

nk �Xn)

(9)
and define

� sup R 2 : �(t)(R) > 0

where

�(t)(R) lim inf
n2N ;n!1

�
1

n
logP

(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� R

is the twisted large-deviation spectrum of the normalized log-likeli-
hood ratio with parameter t, and � satisfies (cf. Lemmas 3 and 4 in
Appendix A) that

�1 < � � lim
n2N ;n!1

1

n
D1�t(X

nk �Xn)

= lim inf
n!1

1

n
D1�t(X

nk �Xn) < K:

We then note by definition of �(t)(�) and the finiteness property of �
that for any � > 0, there exists " > 0 such that

�(t)(� � �) = lim inf
n2N ;n!1

�
1

n
logP

(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� � � � > " > 0:

As a result

P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
> � � �

� 1� e�n" for n 2 N sufficiently large:

On the other hand, define

��(t)(R) lim inf
n2N ;n!1

�
1

n
logP

(t)
X xn2Xn :

1

n
log

PX (xn)

P �X (xn)
�R

and

�� inf R 2 : ��(t)(R) > 0 :

Then by noting that

log
PX (xn)

P �X (xn)
= D1�t(X

nk �Xn)�
1

t
log

P
(t)
X (xn)

PX (xn)
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we have

��(t)(R) = � �tR+
t

n
D1�t(X

nk �Xn)

and

�� =�
1

t
supfR 2 :� (R) > 0g+

1

n
D1�t(X

nk �Xn)

�
1

n
D1�t(X

nk �Xn) (10)

<K for n 2 N sufficiently large (11)

where

�(R) lim inf
n2N ;n!1

�
1

n
logP

(t)
X xn2Xn :

1

n
log

P
(t)
X (xn)

PX (xn)
�R

(10) follows from Lemma 5 in AppendixA, and (11) holds by definition
of K . This indicates the existence of �" > 0 such that ��(t)(K) > �",
which immediately gives that for n 2 N sufficiently large

P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� K � e�n�":

Therefore, for n 2 N sufficiently large

P
(t)
X xn 2 Xn : K >

1

n
log

PX (xn)

P �X (xn)
> � � �

= P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
> � � �

� P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� K

� 1� e�n" � e�n�": (12)

Let I1 (� � �; b1), and

Ik [bk�1; bk) for 2 � k � L
K � � + �

2�

where bk (� � �) + 2k� for 1 � k < L, and bL K . By (12),
there exists 1 � k(n) � L such that

P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
2 Ik(n)

�
1� e�n" � e�n�"

L
(13)

for n 2 N sufficiently large. Then, by letting

R1 lim sup
n2N ;n!1

bk(n) + �

we obtain that for n 2 N sufficiently large

PX xn 2 Xn :
1

n
log

PX (xn)

P �X (xn)
� R1

� PX xn 2 Xn :
1

n
log

PX (xn)

P �X (xn)
2 Ik(n) :

However, for sufficiently large n 2 N , we have (14) and (15) at the
bottom of the page, where (14) follows from (8), and (15) follows from
(13). Consequently

�(R1) = lim inf
n!1

�
1

n
logPX xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� R1

� lim inf
n2N ;n!1

�
1

n
logPX xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� R1

� t � lim sup
n2N ;n!1

bk(n)�1 + lim inf
n2N ;n!1

1

n
D1�t(X

nk �Xn)

� t � lim sup
n2N ;n!1

bk(n) + 2� + lim inf
n!1

1

n
D1�t(X

nk �Xn)

= t 3� + lim inf
n!1

1

n
D1�t(X

nk �Xn)�R1 :

Since � can be made arbitrarily small, the proof is completed.

Observations:

1) While the proof of the forward part is straightforward, the proof
of the converse part is considerably more complex. The objective of the
converse part is to demonstrate that if lim infn!1

1
n
D1�t(X

nk �Xn)
is slightly shifted to the right (by a factor of 3�), then there exists a
coordinate R such that a straight line of slope �=(1� �) given by

y =
�

� � 1
3� + lim inf

n!1

1

n
D1�t(X

nk �Xn)�R

lies above the curve of �(R) at R = R, thus violating its status of
support line for �(R).

This proof is established by observing that the desired coordinate
R lies in a small neighborhood of � , where � is the smallest point for
which �(t)(R) vanishes. A key point is to choose the twisted parameter
t to be equal to �=(� � 1) which is the negative slope of the support
line to �(R). We graphically illustrate this observation (based on a true
example involving binary memoryless or i.i.d. sources) in Fig. 2. The
computational details are described in Example 1 (cf. Section IV).

PX xn 2 Xn :
1

n
log

PX (xn)

P �X (xn)
2 Ik(n) =

x 2X : log 2I

PX (xn)

=

x 2X : log 2I

e
�t log +D (X k �X )

P
(t)
X (xn) (14)

> e�nt(�b + D (X k �X ))

x 2X : log 2I

P
(t)
X (xn)

= e�nt(�b + D (X k �X ))P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
2 Ik(n)

�
1� e�n" � e�n�"

L
e�nt(�b + D (X k �X )) (15)
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Fig. 2. Functions �(R), � (R), and (�=(�� 1))[lim inf D (X k �X )�R] for testing between two binary memoryless sourcesXXX = fX g

and �XXX = f �X g under the distributions (1=2; 1=2) and (1=4; 3=4), respectively, and with � = �7. When R < � log(3=2), �(R) = � (R) =1.

Fig. 3. Functions �(R), � (R), and (�=(� � 1))[lim inf D (X k �X ) � R] for testing between two memoryless sources XXX = fX g and
�XXX = f �X g under the Gaussian distributions N(�; 1) and N(��; 1), respectively, and with � = �0:5.

2) Note also that the proof holds if the alphabet is countable or con-
tinuous as opposed to the source-coding forward and reverse �-cutoff
rates results [4], where the finiteness property of the alphabet is neces-
sary. The modifications in the proof for the continuous case are clear.
Simply, replace the probability mass function by the proper proba-
bility function and the summation by integration. We graphically illus-
trate this observation (based on a true example involving memoryless
Gaussian sources) in Fig. 3. The computational details are described in
Example 2 (cf. Section IV).

3) The proof of the hypothesis testing forward �-cutoff rate is more
involved than the proof of the source coding forward�-cutoff rate result
given in [4]. The main difficulty arises from the formula in Proposition
1 where the infimum for R is taken over the entire real line contrary
to [4, Proposition 1] for source coding where R ranges from 0 to 1.
This requires us to deal separately with the degenerate case � = �1
(cf. Lemma 4 in Appendix A). Also, the technique used to prove the

forward �-cutoff rate for hypothesis testing relies on the proofs of both
the source coding forward and reverse �-cutoff rates, but in major parts
though similar to the reverse source coding �-cutoff rate.

4) If the sources XXX and �XXX are arbitrary (not necessarily stationary,
irreducible) time-invariant finite-alphabet Markov sources of arbitrary
order, then we know that the �-divergence rate exists and can be com-
puted [17], [18]. Thus, in this case, the forward �-cutoff rate for testing
between Markov sources can be obtained. Also, from the definition of
R

(f)
0 (�jXXXk �XXX), it follows directly that for all E > 0

De(EjXXXk �XXX) � sup
�<0

�(E �R
(f)
0 (�jXXXk �XXX)) :

Note that this convex lower bound is computable for the entire class of
Markov sources, whileDe(EjXXXk �XXX) is not necessarily computable in
general (it is computable for irreducible Markov sources [1], [15], see
Fig. 4). We graphically illustrate this observation for testing between
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Fig. 4. Convex lower bound for testing between irreducible Markov sources.Each line of slope � intersects the E-axis at R (�jXXXk �XXX). Proceeding from left
to right, the values of � are �5;�3;�2;�4=3;�1;�2=3;�1=2;�2=5.

irreducible Markov sources in Fig. 4 and arbitrary Markov sources (not
necessarily stationary, irreducible) in Fig. 5. The computational details
are described in Examples 3 and 4 (cf. Section IV).

IV. EXAMPLES FOR THE FORWARD �-CUTOFF RATE

Throughout this section, the natural logarithm is used.

Example 1 Finite-Alphabet Memoryless Sources: Naturally, in this
case, the forward cutoff rate expression is readily known as Theorem
1 reduces to Csiszár’s result [6]. But this example is useful to illustrate
the proof method discussed in Observation 1 of Section III since �(R)
and �(t)(R) can be explicitly derived.

Consider the binary hypothesis testing between two memoryless
(i.i.d.) sources XXX = fXig

1

i=1 and �XXX = f �Xig
1

i=1 under the distribu-
tions (1=2; 1=2) and (1=4; 3=4), respectively. Then the log-likelihood
ratio Z = log P (X)

P (X)
has the following distribution:

PrfZ = log(2)g = 1� PrfZ = log(2=3)g= 1=2:

By Cramer’s theorem [3, p. 9], we get that

�(R) =

1; R < � log(3=2)

log(2); R = � log(3=2)
log(log(3=2)+R)�log(log(2)�R)

log(3)
R

+ log(3=2)
log(3)

log(log(3=2)+R)

+ log(2)
log(3)

log(log(2)�R)

+ log(2)� log(log(3)); � log(3=2) < R

< E[Z ] = log(2)

� log(3)=2

0; otherwise

where E[Z] denotes the expectation of the random variable Z . Let R0

be the rate at which the line of slope �=(1� �) is tangent to �(R). By
straightforward calculations, we get that

R0 = log 2�
log 3

1 + 3

and that the forward �-cutoff rate R(f)
0 (�jXXXk �XXX), which is the R-axis

intercept of the tangent line of slope �=(1� �) to �(R), is given by

R
(f)
0 (�jXXXk �XXX) =

2� � 1

�
log 2�

� � 1

�
log 1 + 3 � log 3:

On the other hand, the �-divergence betweenXXX under �XXX is given by

D�(Xk �X) =
1

�� 1
(�� 2) log 2 + log(1 + 31��)

which yields

D (Xk �X) =
2� � 1

�
log 2�

� � 1

�
log 1 + 3 � log 3:

Note that the forward �-cutoff rate, R(f)
0 (�jXXXk �XXX) and the lim inf �-

divergence rate (which is equal to the �-divergence since the sources
are memoryless) of order � = 1=(1� �) are equal as expected from
Theorem 1. Let us now derive � in order to check that � = R0. First,
we need to compute �(t)(R). The set N is equal to the set of natural
numbers in this case. Note that the distribution of the random variable
Z(t) under the twisted distribution with parameter 0 < t < 1 is given
by

P (t)fZ = log 2g =1=(1 + 3t)

and

P (t)fZ = log(2=3)g=3t=(1 + 3t):
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Fig. 5. Convex lower bound for testing between arbitrary Markov sources.Each line of slope � intersects the E-axis at R (�jXXXk �XXX). Proceeding from left to
right,the values of � are �5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6.

By Cramer’s theorem [3, p. 9], we get that

�(t)(R)=

1; R<� log(3=2)

log(1+3t); R=� log(3=2)

t(R� log 2)

+ log(log(3=2)+R)�log(log(2)�R)
log(3)

R

+ log(3=2)
log(3)

log(log(3=2)+R)

+ log(2)
log(3)

log(log(2)�R)

+ log(1+3t)�log(log(3)); � log(3=2)<R

<E[Z(t)] = log 2
1+3

+ log(2=3) 3
1+3

0; otherwise

where E[Z(t)] denotes the expectation of the random variable Z(t).
Therefore,

� =
log 2

1 + 3t
+ log(2=3)

3t

1 + 3t
:

It is easy to check that indeed we have � = R0 when the twisted param-
eter t is chosen to be �=(� � 1). This example is illustrated in Fig. 2
for � = �7.

Example 2 Continuous Alphabet Memoryless Sources: Consider
the hypothesis testing problem between two memoryless sources
XXX = fXig

1

i=1 and �XXX = f �Xig
1

i=1 under the Gaussian distributions
N(�; 1) and N(��; 1), respectively, where N(a; b) represents a
Gaussian distribution with mean a and variance b. It is easy to check
that the log-likelihood ratio Z = log f (X)

f (X)
is Gaussian distributed

with mean 2�2 and variance 4�2, which gives that the moment
generating function of Z is E[e�Z ] = e2� �+2� � . By Cramer’s
theorem, we get that

�(R) =
1

8�
(R� 2�2)2; R < 2�2

0; otherwise.

Let R0 be the rate at which the line of slope �=(1 � �) is tangent to
�(R). We have that

R0 = 2�2
1 + �

1� �
:

Thus, the forward �-cutoff rate R(f)
0 (�jXXXk �XXX), which is the R-axis

intercept of the tangent line of slope �=(1� �) to �(R), is given by

R
(f)
0 (�jXXXk �XXX) = 2�2

1

1� �
:

On the other hand, the �-divergence between XXX under �XXX is given by
D�(Xk �X) = 2�2�, which yields

D (Xk �X) = 2�2
1

1� �
:

Note that the forward �-cutoff rate R(f)
0 (�jXXXk �XXX), and the lim inf �-

divergence rate (which is equal to the �-divergence since the sources
are memoryless) of order � = 1=(1� �) are equal, as expected from
Theorem 1.

Now, let us compute �(t)(R). The set N in this case is equal to the
set of natural numbers. For some normalization constant C

P
(t)
X (xn)=C � exp �

t

2

n

i=1

(xi+�)
2 exp �

1�t

2

n

i=1

(xi��)
2

=C � exp �
1

2

n

i=1

[t(xi+�)
2+(1�t)(xi��)

2]

=C � exp �
1

2

n

i=1

(x2i+2(2t� 1)�xi+�
2)

which is a Gaussian distribution with mean (1�2t)� and unit variance.
Similarly, by invoking Cramer’s theorem, we get that,

�(t)(R) =
1

8�
(R+ (2t� 1)2�2)2; R < (1� 2t)2�2

0; otherwise.

Hence, � = (1 � 2t)2�2. It is straightforward to check that � = R0

when the twisted parameter t is chosen to be �=(�� 1). This example
is depicted in Fig. 3 for � = �0:5.



670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 4, APRIL 2004

Example 3 Irreducible Finite-Alphabet Markov Sources: Suppose
thatXXX and �XXX are two irreducible Markov sources with arbitrary initial
distributions and probability transition matrices P and Q defined as
follows:

P =
1=3 2=3

1=4 3=4
; Q =

1=5 4=5

5=6 1=6
:

Define a new matrix R = (rij) by

rij = p�ijq
1��
ij ; i; j = 0; 1:

The �-divergence rate between XXX and �XXX exists and is given by

lim
n!1

1

n
D�(X

nk �Xn) =
1

�� 1
log �

where � is the largest positive real eigenvalue of R [17], [18]. Hence,
the computation of the convex lower bound for De(EjXXXk �XXX) is easily
obtained as shown in Fig. 4 for the values

� = �5;�3;�2;�4=3;�1;�2=3;�1=2;�2=5

(proceeding from left to right), where � = 1
1��

� Note that in this case
the convex lower bound is tight [1], [15].

Example 4 Arbitrary Finite-Alphabet Markov Sources: Suppose
that XXX and �XXX are two arbitrary Markov sources with arbitrary initial
distributions and probability transition matrices P and Q defined as
follows:

P =

1=2 1=2 0 0 0

1=4 3=4 0 0 0

0 0 3=5 2=5 0

0 1=6 5=6 0 0

1=4 0 1=4 0 1=2

Q =

1=5 4=5 0 0 0

2=3 1=3 0 0 0

0 0 1=2 1=2 0

0 1=6 5=6 0 0

1=8 0 1=2 0 3=8

:

Define a new matrix R = (rij) by

rij = p�ijq
1��
ij ; i; j = 0; 1; 2; 3; 4:

The �-divergence rate between XXX and �XXX can be computed [17], [18].
Hence, the convex lower bound forDe(EjXXXk �XXX) can be easily derived
as shown in Fig. 5 for the values

� = �5;�3;�2;�1;�2=3;�1=2;�2=5;�1=6

(proceeding from left to right), where � = 1
1��

�

V. HYPOTHESIS TESTING CORRECT EXPONENT AND

PROBLEM FORMULATION

In [6], Csiszár investigated the hypothesis testing problem between
i.i.d. observations by considering the �-cutoff rate for the exponent of
the best correct probability of type 1 with exponential constraint on
the probability of type 2 error. More formally, he used the following
definitions.

Definition 4 [6]: FixE > 0. A rate r is calledE-achievable if there
exists a sequence of acceptance regions An such that

lim sup
n!1

�
1

n
log(1� �n) � r and lim inf

n!1
�
1

n
log �n � E

where �n and �n are type 1 and type 2 error probabilities, respectively.
The infimum of all E-unachievable rates is defined as

D�e(EjXXXk �XXX) inffr > 0 : r is E-unachievableg

and D�e(EjXXXk �XXX) = 1 if the above set is empty.

For 0 < r < D�e(EjXXXk �XXX), every acceptable region An with

lim inf
n!1

�
1

n
log �n � E

satisfies �n > 1 � e�nr for n infinitely often.

Definition 5 [6]: Fix � > 0. R0 � 0 is a reverse �-achievable rate
for the general hypothesis testing problem if

D�e(EjXXXk �XXX) � �(E �R0)

for every E > 0. The reverse �-cutoff rate is defined as the infimum
of all reverse �-achievable rates, and is denoted by R(r)

0 (�jXXXk �XXX).

However, in [14, Sec. 7], Nagaoka and Hayashi investigated (using
Han’s definitions [8]) the general hypothesis testing problem between
arbitrary sources with memory by considering the exponent of the best
correct probability of type 2 with exponential constraint on the proba-
bility of type 1 error. More formally, they used the following definition.

Definition 6 [8], [14]: Fix r > 0. A rateE is called r-unachievable
if there exists a sequence of acceptance regions An such that

lim inf
n!1

1

n
log�n � r and lim sup

n!1

1

n
log(1� �n) � E:

The infimum of all r-unachievable rates is denoted by B�e (rjXXXk �XXX)

B�e (rjXXXk �XXX) inffE > 0 : E is r-unachievableg

and B�e (rjXXXk �XXX) = 1 if the above set is empty.

Preposition 2 [14, Theorem 14, eq. (56)]: Fix r > 0. For the general
hypothesis testing problem, we have that

B�e (rjXXXj �XXX) = r + inffR 2 : ��(R) � rg

where

��(R) lim sup
n!1

�
1

n
logP �X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� R �R:

Remark 1: Note that Csiszár’s and Nagaoka/Hayashi’s definitions
seem different at first glance. In our investigation, we realized that
in order to establish our results on the reverse �-cutoff rate for gen-
eral sources with memory, a formula for the reliability function of the
type 1 probability of correct decoding (or type 1 correct exponent)
D�e(EjXXXk �XXX) is needed. However, in [14], Nagaoka and Hayashi pro-
vided a formula for the reliability function of the type 2 probability
of correct decoding B�e (rjXXXk �XXX). This turned out to be an obstacle,
since we were not able to derive the reverse �-cutoff rate formula by
directly using the formula forB�e (rjXXXk �XXX). To overcome this obstacle,
we observed that if we interchange the roles of the null and alterna-
tive hypotheses distributions (i.e., XXX $ �XXX), and also r with E (i.e.,
r $ E) in Nagaoka/Hayashi’s definition (Definition 6), then a formula
forD�e(EjXXXk �XXX) can be readily obtained from Nagaoka and Hayashi’s
result. More specifically, we have the following.

Definition 7: Fix E > 0. A rate r is called E-unachievable if there
exists a sequence of acceptance regions A0n = Ac

n (complement of
An) such that

lim inf
n!1

�
1

n
log �n � E and lim sup

n!1

�
1

n
log(1� �n) � r

where

�n = Prf �Xn 62 A0ng = Prf �Xn 2 Ang

and �n = PrfXn 2 A0ng = PrfXn 62 Ang:
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The infimum of all E-unachievable rates is given by

B
�

e (Ej �XXXjXXX) = inffr > 0 : r is E-unachievableg

and B�e (Ej �XXXkXXX) = 1 if the above set is empty.

With Definition 7, Proposition 2 becomes as follows.

Proposition 3: For any E > 0

B
�

e (Ej �XXXkXXX) = E + inffR 2 : �(R) � Eg

where

�(R) lim sup
n!1

�
1

n
logPX x

n 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R �R:

Remark 2: We can now clearly observe that Definitions 7 and 4 are
identical. This indicates that Nagaoka and Hayashi’s B�e (Ej �XXXkXXX) is,
in fact, Csiszár’s D�e(EjXXXk �XXX). Hence, using Definition 4, Proposi-
tion 3 should be as follows.

Proposition 4: For any E > 0

D
�

e(EjXXXk �XXX) = E + inffR 2 : �(R) � Eg

where

�(R) lim sup
n!1

�
1

n
logPX x

n 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R �R:

The above proposition is a key ingredient for our main results in
Section VI.

VI. REVERSE �-CUTOFF RATE FOR ARBITRARY SOURCES

In the degenerate case where D�e(EjXXXk �XXX) = 0, we have
that R(r)

0 (�jXXXk �XXX) = 1. Similarly, if D�e(EjXXXk �XXX) = 1, then
R
(r)
0 (�jXXXk �XXX)=0. A graphical illustration of R(r)

0 (�jXXXk �XXX) is given
in Fig. 6. We first show the following lemma, which will provide us
the key mechanism to establish our reverse �-cutoff rate result.

Lemma 2: Fix t < 0. The following two conditions are equivalent:

(8 R 2 ) �(R) � �R(1� t) + tR0 (16)

and

(8 E > 0) D
�

e(EjXXXk �XXX) �
t

t� 1
(E �R0): (17)

Proof:

a) Equation (16) =) (17).

D
�

e(EjXXXk �XXX) =E + inffR 2 : �(R) � Eg

�E + inffR 2 : �R(1� t) + tR0 � Eg

=
t

t� 1
(E �R0)

where the inequality follows from (16).
b) Equation (17) =) (16).

inffR 2 : �(R) � Eg �
t

t� 1
(E �R0)�E

=
1

t� 1
E �

t

t� 1
R0:

Thus,

E � �
1

t� 1
E �

t

t� 1
R0

Fig. 6. A graphical illustration of the reverse �-cutoff rateR (�jXXXk �XXX) for
testing between two arbitrary sourcesXXX and �XXX .

since by [14, Remark 15], �(�) is strictly decreasing. Letting

R =
1

t� 1
E �

t

t� 1
R0

or

E = �R(1� t) + tR0

the above inequality can be rewritten as

�(R) � �R(1� t) + tR0

where R 2 .

We next employ Lemma 2 to show our main result regarding the
reverse �-cutoff rate.

Theorem 2 (Reverse �-Cutoff Rate Formula): The following hold
for the general hypothesis testing problem.

1) R
(r)
0 (�jXXXj �XXX) � lim inf

n!1

1

n
D1=(1��)(X

nk �Xn)

for 0 < � < 1.

2) If �(R) admits a limit

R
(r)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D1=(1��)(X

nk �Xn);

for 0 < � < �max

where

�max sup 
 2 (0; 1) : lim inf
n!1

1

n
D1=(1�
)(X

nk �Xn) <1 :

Note that from the above two inequalities, we directly obtain that for
0 < � < �max

R
(r)
0 (�jXXXk �XXX) = lim inf

n!1

1

n
D1=(1��)(X

nk �Xn)

if �(R) admits a limit.
Proof 4 :

1) Forward part:

R
(r)
0 (�jXXXk �XXX) � lim inf

n!1
(1=n)D1=(1��)(X

nk �Xn)

4For the proof of the continuous alphabet case, the same remark given in
Observation 2 of Section III applies.
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for 0 < � < 1. By the equivalence of conditions (16) and (17), it
suffices to show that

(8 R 2 )�(R) � �R(1� t) + t � lim inf
n!1

1

n
D1�t(X

nj �Xn)

for t = ��=(1� �) < 0.
Consider the twisted distribution defined as

P
(t)
X (xn)

[P �X (xn)]t[PX (xn)]1�t

x̂ 2X

[P �X (x̂n)]t[PX (x̂n)]1�t

= exp t log
P �X (xn)

PX (xn)
+ tD1�t(X

nk �Xn) PX (xn):

(18)

Then for t < 0, we get the equation at the bottom of the page. So

�(R) = lim sup
n!1

�
1

n
logPX

� xn 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R �R

� tR+ t � lim inf
n!1

1

n
D1�t(X

nk �Xn)�R

= �R(1� t) + t � lim inf
n!1

1

n
D1�t(X

nk �Xn): (19)

2) Converse part:

R
(r)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D1=(1��)(X

nk �Xn)

for 0 < � < �max. By the equivalence of (16) and (17), it suffices to
show the existence of R1 for any � > 0 Such that

�(R1) � �R1(1� t) + t lim inf
n!1

1

n
D1�t(X

nk �Xn)� � (20)

where t = ��=(1� �) < 0. Define

�(R) �(R) +R

= lim sup
n!1

�
1

n
logPX xn 2 Xn:

1

n
log

P �X (xn)

PX (xn)
� R :

Then (20) is equivalent to

�(R1) = �(R1) +R1

� tR1 + t lim inf
n!1

1

n
D1�t(X

nk �Xn)� � :

Now, define

� supfR 2 : �(t)(R) > 0g

where

�(t)(R) lim sup
n!1

�
1

n
logP

(t)
X xn2Xn :

1

n
log

P �X (xn)

PX (xn)
�R

is the twisted large deviation spectrum of the normalized log-likelihood
ratio with parameter t. It can be shown that � satisfies �1 < � � 0
(cf. Lemmas 6 and 7 in Appendix B).

By �(t)(� � �=2) > " for some " > 0, we know that

P
(t)
X xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� �� �=2 � e�n"

for infinitely many n. Furthermore, �(t)(�+ �=2) = 0 implies that for
any 0 < �" < "

P
(t)
X xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� �+ �=2 � e�n�" (21)

for all sufficiently large n. Therefore,

P
(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2

� e�n�" � e�n"

for infinitely many n, or equivalently

�
1

n
logP

(t)
X xn2Xn : ���=2<

1

n
log

P �X (xn)

PX (xn)
��+�=2

��
1

n
log[e�n�"�e�n"]

for infinitely many n, which (by the fact that an � bn for infinitely
many n implies that lim infn!1 an � lim supn!1 bn for any two
sequences fang and fbng) immediately gives the second equation at
the bottom of the page. As �" can be made arbitrarily small, we obtain
(22) at the bottom of the following page. Then, by lettingR1 �+�=2,
we obtain the second equation at the bottom of the following page.
Consequently, we get the third equation at the bottom of the following
page, where the second equality holds since �(R) admits a limit, and
the last equality follows from (22).

PX xn 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R =

x 2X : log �R

PX (xn)

=

x 2X : log �R

exp �t log
P �X (xn)

PX (xn)
� tD1�t(X

nk �Xn) P
(t)
X (xn)

� exp �tnR� tD1�t(X
nk �Xn)

x 2X : log �R

P
(t)
X (xn)

� exp �tnR� tD1�t(X
nj �Xn) :

lim inf
n!1

�
1

n
logP

(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2 � lim sup

n!1
�

1

n
log e�n�" � e�n" = �":
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Observation:

1) Unlike Theorem 1, where the forward cutoff rate formula holds
in full generality, the reverse cutoff rate expression of Theorem 2 re-
quires one assumption that �(R) admits a limit. This assumption is not
too stringent; for example, it holds for the class of sources with memory
that satisfy the Gärtner–Ellis theorem [3, p. 15]. However, it is impor-
tant to point out that if this assumption does not hold, the reverse cutoff
rate expression formula is not valid in general (see Example 7 in the fol-
lowing text).

2) Remark also that if �max � � < 1, it is possible that Part 2 of
Theorem 2 may no longer hold (cf. Example 8 below). However, it can
be directly verified that for sources (with general alphabet) satisfying
the Gärtner-Ellis theorem, �max = 1, and hence Part 2 of Theorem 2 is
always valid. Evidently, this is also the case for finite-alphabet sources.

3) The above two observations directly imply that for finite-alphabet
i.i.d. sources, Theorem 2 reduces to Csiszár’s result [6]; i.e., the reverse
�-cutoff rate is given by the Rényi divergence with parameter 1=(1��)
for all 0 < � < 1.

4) Finally, it directly follows from the definition of R(r)
0 (�jXXXk �XXX)

and Part 1 of Theorem 2 (which holds without any assumption), that
a convex lower bound for the reliability function D�e(EjXXXk �XXX) can be
established in terms of the liminf Rényi divergence rate, as noted in

Observation 4 of Section III (with the exception that the supremum is
over 0 < � < 1). Hence, for any sources with memory whose lim inf
Rényi divergence rate is explicitly known (e.g., for general time-in-
variant finite-alphabet Markov sources [17], [18]), a computable lower
bound to D�e(EjXXXk �XXX) can be determined.

VII. EXAMPLES FOR THE REVERSE �-CUTOFF RATE

In this section,we provide four examples to illustrate and facilitate
the understanding of Theorem 2. In Example 5, we present a case
(involving discrete alphabet sources) where �(R) admits a limit and
R
(r)
0 (�jXXXk �XXX) is equal to the Rényi divergence rate. In Example 6, we

illustrate the situation (involving continuous alphabet sources) where
the limit of �(R) does not exist while

R
(r)
0 (�jXXXk �XXX) = lim inf

n!1
(1=n)D1=(1��)(X

nk �Xn):

In Example 7, we construct an example where �(R) does not admit a
limit and

R
(r)
0 (�jXXXk �XXX) 6= lim inf

n!1
(1=n)D1=(1��)(X

nk �Xn):

This example shows thatwithout the assumption on the existence of the
limit of �(R), Theorem 2 may not hold in general (particularly Part 2

lim inf
n!1

�
1

n
logP

(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2 = 0: (22)

PX xn 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R1 � PX xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2

=

x 2X :���=2< log ��+�=2

PX (xn)

=

x 2X :���=2< log ��+�=2

e�tD (X k �X )e
�t log

P
(t)
X (xn)

� e�tD (X k �X )e�tn(���=2)

x 2X :���=2< log ��+�=2

P
(t)
X (xn)

= e�tD (X k �X )e�tn(R ��)P
(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2 :

�(R1) lim sup
n!1

�
1

n
logPX xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R1

= lim inf
n!1

�
1

n
logPX xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R1

� lim inf
n!1

t
1

n
D1�t(X

nk �Xn) + t (R1 � �)

�
1

n
logP

(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2

� lim sup
n!1

t
1

n
D1�t(X

nk �Xn) + t (R1 � �)

+ lim inf
n!1

�
1

n
logP

(t)
X xn 2 Xn : �� �=2 <

1

n
log

P �X (xn)

PX (xn)
� �+ �=2

= t lim inf
n!1

1

n
D1�t(X

nk �Xn) + tR1 � �t
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Fig. 7. Reliability function of the type 1 probability of correct decoding for testing between the two sources P (�) and P (�) as given in Example 5.

of the theorem). In all these examples, the results hold for all values of
� (i.e., �max = 1). In the last example (Example 8), we depict a case
where �max < 1. In all examples, we employ the natural logarithm.

Example 5: Let P �X (an) = 1 � e�2n and P �X (bn) = e�2n,
where an 6= bn and an; bn 2 Xn. Also, let PX (an) = 1�e�cn and
PX (bn) = e�cn, where 0 < c < 2. Then, the log-likelihood ratio
Zn is given by

Zn = log
P �X (Xn)

PX (Xn)

=
log 1�e

1�e
; with probability (in PX )1� e�cn

�(2� c)n; with probability (in PX ) e�cn

which implies that

�(R) �(R) +R = lim
n!1

�
1

n
logPX

1

n
Zn � R

=

0; for R > 0

c; for �(2� c) � R � 0

1; for R < �(2� c).

Let us first compute the �-divergence rate betweenXn and �Xn, where
� > 1. The normalized n-dimensional �-divergence is given by

1

n
D�(X

nk �Xn) =
1

n(�� 1)

� log (1� e�cn)�(1� e�2n)1�� + e�cn�e�2n(1��) :

We have the following three cases.

1) c�+ 2� 2� > 0. Note that e�cn and e�2n approach 0 as
n!1 and that e�cn�e�2n(1��)= e�n(c�+2�2�), which also
approaches 0 as n ! 1. Hence, the �-divergence rate is equal
to 0 since the argument of the logarithm!1 as n!1.

2) c� + 2 � 2� < 0. In this case, since e�n(c�+2�2�) ! 1 as
n!1, the argument of the logarithm, for large n, is dominated
by e�n(c�+2�2�). Hence,

lim
n!1

1

n
D�(X

nk �Xn) = lim
n!1

�
n(c�+ 2� 2�)

n(�� 1)

=
c�+ 2� 2�

1� �
:

3) c�+2� 2� = 0. Clearly, the �-divergence rate is equal to 0 in
this case.

We next determine D�e(EjXXXk �XXX) using Proposition 4.

D�e(EjXXXk �XXX) =E + inffR 2 : �(R)�R � Eg

=

E; for 0 < E � c

c; for c < E � 2

E � 2 + c; for 2 < E:

Now, the reverse �-cutoff rate is the E-axis intercept of the line of
slope � passing by the point (2; c) as illustrated in Fig. 7. A straight-
forward calculation yields

R
(r)
0 (�jXXXk �XXX) = �

c

�
+ 2:

For � = 1=(1� �), we get that

R
(r)
0 (�jXXXk �XXX) =

c�+ 2� 2�

1� �
:

Since by definition, R(r)
0 (�jXXXk �XXX) � 0, we directly obtain that

R
(r)
0 (�jXXXk �XXX) = lim

n!1

1

n
D1=(1��)(X

nk �Xn); for 0 < � < 1:

Note that for this example, �max = 1 since the �-divergence rate is
always finite.

Example 6: Consider the hypothesis testing problem between two
i.i.d. (memoryless) Gaussian sources

XXX = fXng
1

n=1 and �XXX = f �Xng
1

n=1

such that forn odd,XXX and �XXX have distributionsN(�1; 1) andN(1; 1),
respectively; for n even, XXX and �XXX have distributions N(�2; 1) and
N(2; 1), respectively. Then

z(x) = log
dP �X(x)

dPX(x)

=
log e

e
= 2x; if n is odd

log e

e
= 4x; if n is even.
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Hence, under distribution PXXX , the log-likelihood ratios Z1; Z2; . . . are
i.i.d. with N(�2; 4) for n odd, and with N(�8; 16) for n even. So, it
follows using the Gärtner–Ellis theorem that

� 1

n
logPX xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R

= � 1

n
log Pr

Z1 + Z2 + � � �+ Zn
n

� R

!
(R+2)

8
1fR < �2g; if n is odd

(R+8)
32

1fR < �8g; if n is even

where 1f�g denotes the indicator function. We then obtain that

�(R) = lim sup
n!1

� 1

n
logPX

xn 2 Xn :
1

n
log

P �X (xn)

PX (xn)
� R �R

=
(R+ 2)2

8
1fR < �2g �R:

Given the above �(R) (note that the limit of �(R) does not exist), we
can determine the correct exponent D�e(EjXXXk �XXX) using Proposition 4
as follows:

D�e(EjXXXk �XXX)

= E + inffR 2 : �(R) � Eg = (
p
E �

p
2)21fE � 2g:

Solving for theE-axis intercept of the support line toD�e(EjXXXk �XXX) of
slope � yields the reverse �-cutoff rate

R
(r)
0 (�jXXXk �XXX) =

2

1� �
:

Finally, a simple calculation gives that

lim inf
n!1

1

n
D1=(1��)(X

nk �Xn) =
2

1� �

which is finite for 0 < � < �max = 1 (note that lim sup Rényi diver-
gence rate equals 8=(1� �)). Hence, we obtain that R(r)

0 (�jXXXk �XXX) is
equal to the lim inf Rényi divergence rate for all 0 < � < 1.

Example 7: Consider the hypothesis testing problem between sour-
cesXXX = fXig1i=1 and �XXX = f �Xig1i=1, where for odd n,XXX and �XXX are,
respectively, unit-variance memoryless Gaussian with means �� and
�, and for even n,XXX and �XXX have respective distributions PX (xn0 ) =
e��n, PX (xn1 ) = 1 � e��n, and P �X (xn0 ) = e�2�n, P �X (xn1 ) =
1 � e�2�n where xn0 6= xn1 . Then for odd n

Zn(x
n) =

1

n
log

dP �X (xn)

dPX (xn)
=

2�

n

n

i=1

xi

and for even n

Zn(x
n) =

1

n
log

P �X (xn)

PX (xn)

=
1
n
log e

e
= ��; if xn = xn0

1
n
log 1�e

1�e
= 1

n
log(1 + e��n); if xn = xn1 .

Hence, under distribution PXXX , the normalized log-likelihood ratio
Zn(X

n) is normal distributed with mean �2�2 and variance 4�2=n
for odd n; for even n

Pr [Zn(X
n) = ��] = e��n and

Pr Zn(X
n) =

1

n
log 1 + e��n =1� e��n:

In addition, under distribution P �XXX , the normalized log-likelihood ratio
Zn( �X

n) is normal distributed with mean 2�2 and variance 4�2=n for
odd n; for even n

Pr Zn( �X
n) = �� = e�2�n and

Pr Zn( �X
n) =

1

n
log 1 + e��n =1� e�2�n:

Direct Derivation of the Correct Exponent: It is known from the
Neyman–Pearson lemma [16] that the log-likelihood test is optimal.
Hence, the type 1 and type 2 error probabilities (�n and �n) can be
written as

�n = Pr[Zn(X
n) > Rn] + (1� !n)Pr[Zn(X

n) = Rn]

and

�n = Pr[Zn( �Xn) < Rn] + !nPr[Zn( �X
n) = Rn]

where !n 2 [0; 1] is some randomization factor, and Rn is the log-
likelihood ratio threshold.

Now the requirement in Definition 4 for

lim inf
n!1

�(1=n) log �n = E > 0

can be met for

Rn = 2�2 � 2�
p
2E and !n = 0

if n is odd, and for
Rn = 1

n
log(1 + e��n) and !n = e�En; if 0 < E < 2�

Rn = 1
n
log(1 + e��n) and !n � e�2�n; if E = 2�

Rn = �� and !n = e�(E�2�)n; if E � 2�

if n is even. Thus, if we take � = 18�2 and apply the Gärtner–Ellis
theorem, we get the following (type 1) correct exponent

D�e(EjXXXk �XXX)

= lim sup
n!1

� 1

n
log(1� �n)

= lim sup
n!1

� 1

n
log (Pr[Zn(X

n) < Rn]

+ !nPr[Zn(X
n) = Rn])

= max (
p
E �

p
2�)2 � 1fE > 2�2g; E � 1f0 < E � �g

+ � � 1f� < E � 2�g+ (E � �) � 1fE > 2�g

=

E; if 0 < E � 18�2

18�2; if 18�2 < E � 32�2

(
p
E �p

2�)2; if 32�2 < E � 50�2

E � 18�2; for E � 50�2:
The Correct Exponent using Nagaoka and Hayashi’s Formula:

We next verify our above direct derivation of the correct exponent
D�e(EjXXXk �XXX) by applying Nagaoka and Hayashi’s formula in Propo-
sition 4

�(R) = lim sup
n!1

� 1

n
logPX xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R

= lim sup
n!1

� 1

n
log Pr [Zn(X

n) � R]

= max
(R+ 2�2)2

8�2
� 1fR < �2�2g;

� � 1f�� � R � 0g+1 � 1fR < ��g

=

0; for R > 0

�; for �2�2 � 2�
p
2� � R � 0

(R+2� )

8�
; for �� � R < �2�2 � 2�

p
2�

1; for R < ��.
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Setting � = 18�2, the following expression for �(R) is obtained:

�(R) �(R)�R

=

�R; for R > 0

18�2 �R; for �14�2 � R � 0
(R�2� )

8�
; for �18�2 � R < �14�2

1; for R < �18�2.
Hence, by Proposition 4

D�e(EjXXXk �XXX) =E + inffR 2 : �(R)�R � Eg

=

E; for 0 < E < 18�2

18�2; for 18�2 � E < 32�2

(
p
E �p

2�)2; for 32�2 � E � 50�2

E � 18�2; for E > 50�2

and indeed our direct derivation coincides with Nagaoka and Hayashi’s
expression.
Examination of the Reverse Cutoff Rate: By Lemma 2, the �-reverse

cutoff rateR(r)
0 (�jXXXk �XXX) is the smallestR0 satisfying �(R) = �(R)+

R � t(R + R0), where t = �=(� � 1) for 0 < � < 1. We thus get
that

R
(r)
0 (�jXXXk �XXX) =

0; for � 9
7
� t < 0

7t+9
t

� 2�2; for �3 � t < � 9
7

(1� t) � 2�2; for �4 � t < �3
9t+16

t
� 2�2; for t < �4.

We next compute the lim inf(1 � t)-divergence rate (where � = t=

(t � 1)) to compare it with R(r)
0 (�jXXXk �XXX)

1

n
D1�t(X

nk �Xn)

=� 1

nt
log

x 2X

et log[dP (x )=dP (x )]dPX (xn)

=� 1

nt
logE entZ (X )

=
2(1� t)�2; for n odd

� 1
nt

log e�(t+1)�n+(1+e��n)t(1�e��n) ; for n even.

Since

lim
n!1

� 1

nt
log e�(t+1)�n + (1 + e��n)t(1� e��n)

= �
t+ 1

t
1ft < �1g

we obtain (with � = 18�2) that

lim inf
n!1

1

n
D1�t(X

nk �Xn)

= min 2(1� t)�2;
t+ 1

t
� 18�2 � 1ft < �1g

=

0; for t � �1
t+1
t
� 18�2; for �4 +

p
7 � t < �1

(1� t) � 2�2; for �4�p
7 � t < �4 +

p
7

t+1
t
� 18�2; for t < �4�p

7:

Note from this example, where �(R) does not admit a limit, that

R
(r)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D1�t(X

nk �Xn)

for t < 0 (i.e., Part 1 of Theorem 2 is valid), while Part 2 of Theorem 2
does not hold (e.g., for t = �8, R(r)

0 (�jXXXk �XXX) = 14�2 while
lim infn!1

1
n
D1�t(X

nk �Xn) = 15:75�2). Hence, if the limit of
�(R) does not exist

R
(r)
0 (�jXXXk �XXX) 6= lim inf

n!1

1

n
D1�t(X

nk �Xn)

in general.

Example 8: In this example,we illustrate the situation where
�max = 1=2 < 1 and show that if �max < � < 1, Part 2 of Theorem 2
may not hold.

Consider the hypothesis testing problem between two sourcesXXX =
fXig1i=1 and �XXX = f �Xig1i=1. BothXXX and �XXX have a point mass on ~xn,
and have a density over the hyper-line a�x̂n = (a�x̂1; a�x̂2; . . . ; a�x̂n)
for a � 0, where ~xn 62 fxn 2 n : xn = a � x̂n for some a � 0g and
x̂n 6= 0 is fixed. The densities for XXX and �XXX over fxn 2 n : xn =
a � x̂n for some a � 0g are described by

pX (a � x̂n) = �ne�(a+1)�n

and

p �X (a � x̂n) = 2�ne�2(a+1)�n

respectively. Furthermore, PX (~xn) = 1 � e��n, and P �X (~xn) =
1 � e�2�n. Then under distribution PXXX

Zn(a � x̂n) = 1

n
log

p �X (a � x̂n)
pX (a � x̂n) =

1

n
log

2�ne�2(a+1)�n

�ne�(a+1)�n

=
1

n
log(2)� (a+ 1)� `

with density �ne�(a+1)�n � 1fa � 0g
and

Zn(~x
n) =

1

n
log

P �X (~xn)

PX (~xn)
=

1

n
log

1� e�2�n

1� e��n

=
1

n
log(1 + e��n) with prob. 1� e��n:

Then by the Gärtner–Ellis theorem, we get the expression at the bottom
of the page. Note that the limit of �(R) (or �(R)) does exit. A direct
application of Lemma 2 yields that R(r)

0 (�jXXXk �XXX)=0 for �1� t<0;

and that R(r)
0 (�jXXXk �XXX) = 1 for t < �1 (where t = �=(� � 1)). We

next compute the lim inf(1� t)-divergence rate, where � = t=(t� 1)

1

n
D1�t(X

nk �Xn)

= � 1

nt
log

x 2X

et log[dP (x )=dP (x )]dPX (xn)

= � 1

nt
logE entZ (X )

�(R) = lim sup
n!1

� 1

n
logPX xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R

= lim sup
n!1

� 1

n
log Pr [Zn(X

n) � R]

=

0; R > 0

�; for �� < R � 0

lim supn!1� 1
n
log

1

log(2)=(n�)�R=��1
�ne��n(a+1)da; for R � ��

= � � 1f�� < R � 0g �R � 1fR � ��g:
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= �
1

nt
log

1

0

ent((1=n) log(2)�(a+1)�)

� �ne�(a+1)�n da+ (1 + e��n)t(1� e��n)

= �
1

nt
log �n2te�(t+1)�n

1

0

e�a(t+1)�n da

+ (1 + e��n)t(1� e��n)

! 0 � 1f�1 < t < 0g+1 � 1ft � �1g:

Therefore,

R
(r)
0 (�jXXXk �XXX) � lim inf

n!1

1

n
D1�t(X

nk �Xn)

for all t < 0 (i.e., 0 < � < 1) and Part 1 of Theorem 2 is satisfied.
However,

R
(r)
0 � lim inf

n!1

1

n
D1�t(X

nk �Xn)

only for�1 < t < 0; in other words, Part 2 of Theorem 2 is only valid
for 0 < � < �max = 1=2. Notably, for t = �1

0 = R
(r)
0 (�jXXXk �XXX) < lim inf

n!1

1

n
D1�t(X

nk �Xn) =1:

VIII. CONCLUSION

We examined the forward and reverse �-cutoff rates for the hy-
pothesis testing problem between arbitrary sources with memory (not
necessarily Markovian, ergodic, stationary, etc.) and arbitrary alphabet
(countable or continuous). We showed that the forward �-cutoff rate
is given by the lim inf Rényi �-divergence rate, where � = 1

1�� and
� < 0. We also demonstrated that if the large-deviation spectrum
�(R) admits a limit, then the reverse �-cutoff rate is given by the
lim sup �-divergence rate, where � = 1

1�� and 0 < � < �max. For
�max � � < 1, we provided an upper bound on the reverse �-cutoff
rate. As expected, for finite-alphabets i.i.d. sources, our theorems
reduce to Csiszár’s result [6]. Our forward and reverse �-cutoff rates
results and the methods used to derive them were illustrated via
several examples. An interesting consequence of this work is that
while the formula of the type 1 error (respectively, correct) exponent
is not explicitly known for general sources with memory, our forward
(respectively, reverse) �-cutoff rate result, expressed in terms of
the lim inf Rényi divergence rate, can be used to provide a useful
convex lower bound (which is computable in principle) to the error
(respectively, correct) exponent.

Future work may include the study of Csiszár’s channel coding
�-cutoff rates [6] for arbitrary discrete channels with memory using
our information spectrum techniques.

APPENDIX A
PROPERTIES OF � AND �(R)

Lemma 3: For 0 < t < 1

� supfR : �(t)(r) > 0g � lim inf
n!1

1

n
D1�t(X

nk �Xn):

Proof: For any � > 0

P
(t)
X xn2Xn :

1

n
log

PX (xn)

P �X (xn)
> lim inf

n!1

1

n
D1�t(X

nk �Xn)+2�

� P
(t)
X xn2Xn :

1

n
log

PX (xn)

P �X (xn)
>

1

n
D1�t(X

nk �Xn)+� ;

for n2N sufficiently large

where N is defined in (9). But

P
(t)
X xn2Xn :

1

n
log

PX (xn)

P �X (xn)
>

1

n
D1�t(X

nk �Xn)+�

=P
(t)
X xn2Xn : �

1

n
log

P �X (xn)

PX (xn)
+D1�t(X

nk �Xn) >�

=P
(t)
X xn2Xn :

t

n
log

P �X (xn)

PX (xn)
+D1�t(X

nk �Xn) < ��t

=P
(t)
X xn2Xn :

1

n
log

P
(t)
X (xn)

PX (xn)
< ��t

=P
(t)
X xn2Xn :P

(t)
X (xn)<e�n�tPX (xn)

�e�n�tPX xn2Xn :P
(t)
X (xn)<e�n�tPX (xn)

�e�n�t (23)

where (23) follows from (8). Thus, for n 2 N sufficiently large

P
(t)
X xn2Xn :

1

n
log

PX (xn)

P �X (xn)
� lim inf

n!1

1

n
D1�t(X

nk �Xn)+2�

� 1� e�n�t

which implies

�(t) lim inf
n!1

1

n
D1�t(X

nk �Xn) + 2�

= lim inf
n2N ;n!1

�
1

n
logP

(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)

� lim inf
n!1

1

n
D1�t(X

nk �Xn) + 2�

� lim sup
n2N ;n!1

�
1

n
log 1� e�n�t = 0:

Consequently

sup R : �(t)(R) > 0 � lim inf
n!1

1

n
D1�t(X

nk �Xn) + 2�:

The proof is completed by noting that � can be made arbitrarily small.

Lemma 4: For 0 < t < 1, if lim infn!1
1
n
D1�t(X

nk �Xn) < K ,
then

� supfR : �(t)(R) > 0g > �1:

Proof: By (8), we get that

P
(t)
X (xn) = etD (X k �X )e

(1�t) log
P �X (xn):

Hence,

P
(t)
X xn 2 Xn :

1

n
log

PX (xn)

P �X (xn)
� R

� etD (X k �X )e(1�t)nR

� P �X xn 2 Xn :
1

n
log

PX (xn)

P �X (xn)
� R

� etD (X k �X )e(1�t)nR

which implies that

�(t)(R) � �t lim sup
n2N ;n!1

1

n
D1�t(X

nk �Xn)� (1� t)R:

Therefore,

� � �
t

1� t
lim sup

n2N ;n!1

1

n
D1�t(X

nk �Xn):
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This shows that � = �1 implies that

lim sup
n2N ;n!1

1

n
D1�t(X

nk �Xn) = lim
n2N ;n!1

1

n
D1�t(X

nk �Xn)

= lim inf
n!1

1

n
D1�t(X

nk �Xn)

=1

contradicting the assumption that

lim inf
n!1

(1=n)D1�t(X
nk �Xn) < K:

Lemma 5: We have the following:

supfR 2 : � (R) > 0g � 0:

Proof: For any � > 0

P
(t)
X xn 2 Xn :

1

n
log

P
(t)
X (xn)

PX (xn)
� ��

= P
(t)
X xn 2 Xn : P

(t)
X (xn) � e�n�PX (xn)

� e�n�PX xn 2 Xn : P
(t)
X (xn) � e�n�PX (xn)

� e�n�

which implies �(��) � �. Hence, the lemma holds.

APPENDIX B
PROPERTIES OF �

Lemma 6: For t < 0, � � 0.
Proof: Observe that for R > 0

P
(t)
X xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
> R

� e�nR(1�t)+tD (X k �X )

� P �X xn 2 Xn :
1

n
log

P �X (xn)

PX (xn)
> R

� e�nR(1�t)+tD (X k �X )

� e�nR(1�t)

where the last inequality follows from the nonnegativity of
D1�t(X

nk �Xn) and the negativity of t. This implies that for
R > 0

�(t)(R) � lim sup
n!1

�
1

n
log 1� e�nR(1�t) = 0

which immediately implies that � � 0.

Lemma 7: For 0 > t > tmin �max=(�max � 1), � > �1.
Proof: If � = �1, then �(t)(R) = 0 for every R 2 . Hence,

by choosing any v = (t� tmin)=2, we have

P
(t)
X xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R

� etD (X k �X )�(t�v)D (X k �X )+vnR

� P
(t�v)
X xn 2 Xn :

1

n
log

P �X (xn)

PX (xn)
� R

� e�(t�v)D (X k �X )+vnR

which implies that

0 = �(t)(R)

� lim sup
n!1

(t� v)
1

n
D1�(t�v)(X

nk �Xn) � vR

=(t� v) lim inf
n!1

1

n
D1�(t�v)(X

nk �Xn)� vR:

This indicates that

lim inf
n!1

1

n
D1�(t�v)(X

nk �Xn) �
v

t� v
R; for every R 2

or equivalently

lim inf
n!1

1

n
D1�(t�v)(X

nk �Xn) =1:

A contradiction to the definition of tmin is obtained, since by
Lyapounov’s inequality [2, eq. (5.37)], for 0 > � > 


exp ��D1��(X
nk �Xn)

=
x 2X

PX (xn)

P �X (xn)

1��

P �X (xn)

1=(1��)

�
x 2X

PX (xn)

P �X (xn)

1�


P �X (xn)

1=(1�
)

= exp �
D1�
(X
nk �Xn)

or equivalently

j�jD1��(X
nk �Xn) � j
jD1�
(X

nk �Xn)

and hence by definition of tmin

lim inf
n!1

1

n
D1�(t�v)(X

nk �Xn) <1:
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