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Abstract. In this paper, we restudy the covering radius of block codes from an information
theoretic point of view by ignoring the combinatorial formulation of the problem. In the new setting,
the formula of the statistically defined minimum covering radius, for which the probability mass
of uncovered space by M spheres can be made arbitrarily small, is reduced to a minimization of
a statistically defined spectrum formula among codeword-selecting distributions. The advantage
of the new view is that no assumptions need to be made on the code alphabet (such as finite,
countable, etc.) and the distance measure (such as additive, symmetric, bounded, etc.) in the
problem transformation, and hence the spectrum formula can be applied in most general situations.
We next address a sufficient condition under which uniform codeword-selecting distribution minimizes
the spectrum formula. With the condition, the asymptotic minimum covering radius for block codes
under J-ary quantized channels and constant weight codes under Hamming distance measure are
determined to display the usage of the spectrum formula.
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1. Introduction. We first introduce the notations used in this paper. We
denote the n-tuple alphabet by Xn = X × X × · · · × X . For any two elements
xn = (x0, x1, . . . , xn−1) and yn = (y0, y1, . . . , yn−1) in Xn, we use µn(x

n, yn) to de-
note the n-fold measure1 on the “distance” between them. In our study, the codewords
are drawn from a pregiven codeword set Sn, which can be either the entire space Xn

or its proper subset. Such a generalization will be useful for some specific applications,
such as constant weight codes, where the codewords are drawn from a subset (of Xn)
containing only words of fixed weight.

Based on the above notations, the problem on the minimum covering radius be-
comes the following: for given M and Sn, determine the minimum radius ρ(M,Sn)
for which M spheres that center at M selected elements from Sn jointly cover the
entire space Xn. Specifically,

ρ(M,Sn)�= min
C⊂Sn

|C|=M

max
xn∈Xn

min
yn∈C

µn(x
n, yn),(1)
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1Conventionally, a distance [16, p. 139] should satisfy the properties of (i) nonnegativity, (ii)
being zero iff two points coincide, (iii) symmetry, and (iv) triangle inequality. The spectrum formula
derived in this paper, however, is applicable to any measurable function defined over the alphabets.
Since none of the above four properties are assumed, the measurable function on the “distance”
between two code letters is therefore termed generalized distance function. For simplicity, we will
abbreviate the generalized distance function simply as the distance function in the remaining part of
the paper.
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where |C| denotes the size of the set C. Here we do not assume that the M elements
drawn from Sn must be distinct. In other words, one can choose M identical elements
from Sn as long as the resultant codebook gives the minimum covering radius. In
addition, we implicitly assume that |Sn| > 0.

The problem of determining the covering radius has been studied by many re-
searchers [2], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [17], [18], [19], [20], [21]
among which [2], [5], [6], [11], [17], and [19] focused on its asymptotic behavior with
respect to block length n under an exponentially increasing size M = enR and a fixed
rate R. Specifically, [5], [17], and [19] investigate this problem based on combinato-
rial techniques, while the studies in [2] and [11] introduce probabilistic approaches.
All the mentioned works concentrated on codes transmitted over binary symmetric
channel, where Hamming distance is the only distance measure.

In this paper, we employ a new notion from information-spectrum methodologies
[3], [13] to determine the asymptotic minimum covering radius among (a prespecified
class of) block codes. As a result, the asymptotic minimum covering radius formula
can be established under any alphabet Xn and any measure on the “distance” between
elements in Xn. With the new expression, we can now, for example, investigate the
asymptotic minimum covering radius not only for Hamming distance but also for the
“quantized distance measure” defined for codes transmitted over quantized channels.

The rest of the paper is organized as follows. In section 2, we transform the
problem of determining the asymptotic minimum covering radius among block codes
into one that minimizes a spectrum function ΩY‖X(R) among all codeword-selecting
distributions Y . A sufficient condition under which uniform Y minimizes the spec-
trum function is next addressed in section 3. Based on the sufficient condition, the
asymptotic minimum covering radius for arbitrary block codes under J-ary quan-
tized channels and constant weight codes under Hamming distance are established in
section 4 to display the usage of the spectrum formula.

Throughout the paper, the natural logarithm is employed unless otherwise stated.

2. Asymptotic minimum covering radius for block codes. Define a sphere
centered at yn with radius r as

Br(y
n)

�
= {xn ∈ Xn : µn(x

n, yn) ≤ r} .
Definition 2.1 (minimum α-covering radius under codeword set Sn and covering

distribution PXn). Fix α ∈ [0, 1]. The minimum α-covering radius under codeword
set Sn and distribution PXn is given by

ρα (M,Sn ‖Xn )
�
= inf

C⊂Sn
|C|=M

inf

{
r ∈ 
 : PXn

( ⋃
yn∈C

Br(y
n)

)
≥ α

}
.

The α-covering radius for one specific block code is the smallest sphere radius for
which the probability mass of all words, covered by M spheres, is no smaller than α
(cf. Figure. 2.1). The probability mass placed on each element xn in Xn is assumed to
be defined through the covering distribution PXn . Taking the minimum one among
all α-covering radii yields the minimum α-covering radius.

It can be verified that the conventional definition of the minimum covering ra-
dius ρ(M,Sn) (cf. (1)) is exactly the 1-covering radius under a full-support2 covering

2The support of a distribution is the smallest set with probability mass being equal to 1. Here,
“full-support” means the support of PXn is Xn.
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The entire space Xn (with distribution PXn defined over Xn)

⋃
yn∈C

Br(y
n) = the shaded area

Fig. 2.1. The α-covering radius for a block code is the smallest radius r such that
PXn (∪yn∈CBr(yn)) ≥ α.

distribution PXn . Specifically, given that the support of PXn is Xn,

ρ(M,Sn) �
= min

C⊂Sn
|C|=M

max
xn∈Xn

min
yn∈C

µn(x
n, yn)

= inf
C⊂Sn

|C|=M

inf

{
r ∈ 
 : PXn

( ⋃
yn∈C

Br(y
n)

)
= 1

}

= ρ1(M,Sn ‖Xn) .

Accordingly, the conventional asymptotic covering radius problem is to find the limit,
as n → ∞, of the quantity

1

n
ρ(M,Sn) = 1

n
ρ1(M,Sn‖Xn)

under a full-support distribution PXn and a fixed rate R = log(M)/n. Since the quan-
tity is investigated as n goes to infinity, it is justified to takeM = enR as integers. Now
if the targeted quantity becomes (1/n)ρα(M,Sn‖Xn) instead of (1/n)ρ(M,Sn), then
the full-support assumption on covering distribution PXn can be relaxed. Equipped
with the new setting, one can place larger probability mass on those elements that
are considered more essential (to cover) than other elements.

The concept of our method is similar to that of the random coding technique
employed in the channel reliability function [1]. Each codeword is assumed to be
selected independently of all others from Sn through a generic distribution PY n with
PY n(Sn) = 1. Then the sphere centered at each random codeword with radius r
becomes a random variable and so does the resultant codebook. For convenience, we
use Br(Y

n) and C to denote the random sphere and the random codebook, respectively.
Lemma 2.2. Fix a sequence of codeword sets

S= {Sn}n≥1, where Sn ⊂ Xn and |Sn| > 0,
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and a triangular array of covering distributions PX = {PXn}∞n=1 . For any triangular-
array codeword-selecting process

Y = Y(S) =
{
Y n =

(
Y

(n)
1 , Y

(n)
2 , . . . , Y (n)

n

)}∞

n=1

satisfying PY n(Sn) = 1 for each n, and any α ∈ [0, 1),

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ Ω̄Y‖X(R)(2)

and

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ ΩY‖X(R),(3)

where3

Ω̄Y‖X(R)
�
= inf

{
a ∈ 
 : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}

and

ΩY‖X(R)
�
= inf

{
a ∈ 
 : lim inf

n→∞ EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}
.

Proof. We will prove only (2). Inequality (3) can be proved by simply following
the same procedure.

Let

λ
�
= inf

{
a ∈ 
 : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}
.

By definition,

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)M
]
= 0(4)

for any ε > 0. Equation (4) then implies that for sufficiently large n,

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)M
]
<

1− α

2
.(5)

Now for a given codebook C, define

φr(x
n| C) �

=




1 if xn ∈
⋃
yn∈C

Br(y
n),

0 otherwise.

3Here, we adopt the notation that

EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣Xn
)M
]
=

∫
Xn

(PY n|Xn {yn ∈ Sn : µn(x
n, yn) > na})MdPXn (xn)

=

∫
Xn

(PY n {yn ∈ Sn : µn(x
n, yn) > na})M dPXn (xn),

where the last step follows since Xn and Y n are implicitly assumed to be independent.
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Then

E

[
PXn

{ ⋃
yn∈C

Br(y
n)

}]
= E

[∫
Xn

φr(x
n|C)dPXn(xn)

]

=

∫
Xn

E [φr(x
n|C)] dPXn(xn),

where the expectation is taken with respect to the random codebook C drawn inde-
pendently from Sn according to codeword-selecting process Y n. By definition,

E [φr(x
n|C)] = 1− Pr {xn �∈ Br(Y

n
1 ) and xn �∈ Br(Y

n
2 ) and · · · and xn �∈ Br(Y

n
M )}

= 1− (Pr {xn �∈ Br(Y
n)})M

= 1− (PY n {yn ∈ Sn : µn(x
n, yn) > r})M .

Therefore, by taking r = n(λ+ ε) and for those n satisfying (5), we obtain

E

[
PXn

{ ⋃
yn∈C

Bn(λ+ε)(y
n)

}]

=

∫
Xn

[1− (PY n {yn ∈ Sn : µn(x
n, yn) > n(λ+ ε)})M ]dPXn(xn)

= 1− EXn

[(
Pr

{
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

})M
]

> 1− 1− α

2
> α,

which implies that among all possible selections, there exists one codebook C ⊂ Sn
satisfying

PXn

{ ⋃
yn∈C

Bn(λ+ε)(y
n)

}
> α.

Consequently, n(λ+ ε) ≥ ρα(M,Sn‖Xn) or, equivalently,

λ+ ε ≥ 1

n
ρα(M,Sn‖Xn)(6)

for all sufficiently large n. By taking the limsup with respect to n on (6), the proof is
completed since ε is arbitrary.

We are now ready to prove the main theorems of the paper.
Theorem 2.3 (upper bound). Fix a sequence of codeword set S= {Sn}n≥1. For

any covering process X= {Xn}∞n=1,

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
Ω̄Y‖X(R)

and

sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
ΩY‖X(R),

where the infimum is taken over all processes Y with PY n(Sn) = 1 (which for conve-
nience is denoted by Y(S) in what follows).
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Proof. The theorem follows immediately from Lemma 2.2.
Theorem 2.4 (lower bound). Fix a sequence of codeword set S= {Sn}n≥1. For

any covering process X,

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≥ sup

γ>0
inf

Y(S)
Ω̄Y‖X(R+ γ)(7)

and

sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≥ sup

γ>0
inf

Y(S)
ΩY‖X(R+ γ).(8)

Proof. Again, we will prove only (7), since (8) can be proved in a similar fashion.
To prove the inequality in (7), it suffices to prove the existence of Y(S) such that

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) + ε ≥ Ω̄Y‖X(R+ γ)

for any ε > 0. This can be justified as follows.
Fix ε > 0 and define

λ
�
= sup

0≤α<1
lim sup
n→∞

1

n
ρα(M,Sn‖Xn).

By definition of infimum (cf. Definition 2.1), for any integer m > 1, there exists a
code Cn(m) ⊂ Sn of size M (for each n) such that

ρ(m−1)/m(M,Sn‖Xn) ≥ inf

{
r ∈ 
 : PXn

[ ⋃
yn∈Cn(m)

Br(y
n)

]
≥ m− 1

m

}
− ε.

Therefore,

λ ≥ lim sup
n→∞

1

n
ρ(m−1)/m(M,Sn‖Xn)

≥ lim sup
n→∞

1

n
inf

{
r ∈ 
 : PXn

[ ⋃
yn∈Cn(m)

Br(y
n)

]
≥ m− 1

m

}
,

which indicates the existence of Nm such that for all n ≥ Nm,

1

n
inf

{
r ∈ 
 : PXn

[ ⋃
yn∈Cn(m)

Br(y
n)

]
≥ m− 1

m

}
< λ+ ε.

Hence, for n ≥ Nm,

PXn

[ ⋃
yn∈Cn(m)

Bn(λ+ε)(y
n)

]
≥ m− 1

m
.

Now, for max1<i≤mNm ≤ n < max1<i≤(m+1) Nm, choose Y n to be a uniform
distribution over Cn(m) and let

Vn �
=

⋃
yn∈Cn(m)

Bn(λ+ε)(y
n).
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By noting that for any xn ∈ Vn there exists yn ∈ Cn(m) satisfying

1

n
µn(x

n, yn) ≤ λ+ ε,

we obtain for all n ≥ max1<i≤mNm,

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)en(R+γ)]

=

∫
Vn

Pr

(
1

n
µn(x

n, Y n) > λ+ ε

)Menγ

dPXn(xn)

+

∫
Vc

n

Pr

(
1

n
µn(x

n, Y n) > λ+ ε

)Menγ

dPXn(xn)

≤
∫
Vn

(
1− 1

M

)Menγ

dPXn(xn) +

∫
Vc

n

1 dPXn(xn)

≤
(
1− 1

M

)Menγ

+

(
1− m− 1

m

)

=

(
1− 1

M

)Menγ

+
1

m
,

where the superscript “c” applied on Vn represents the set complementary operation.
This result immediately gives

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)Menγ]
≤ 1

m
.

Since we can take arbitrarily large m,

lim sup
n→∞

EXn

[
Pr

(
1

n
µn(X

n, Y n) > λ+ ε

∣∣∣∣Xn

)Menγ]
= 0.

Consequently, Ω̄Y‖X(R+ γ) ≤ λ+ ε.

Theorems 2.3 and 2.4 together conclude to

inf
Y(S)

Ω̄Y‖X(R+ γ) ≤ sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
Ω̄Y‖X(R)

and

inf
Y(S)

Ω̄Y‖X(R+ γ) ≤ sup
0≤α<1

lim inf
n→∞

1

n
ρα(M,Sn‖Xn) ≤ inf

Y(S)
ΩY‖X(R)

for every γ > 0. A direct interpretation on the quantity of

sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn)

(
resp., sup

0≤α<1
lim inf
n→∞

1

n
ρα(M,Sn‖Xn)

)

is as follows. It represents, in asymptotics, the minimum radius with which M spheres
centered at some node in Sn can cover almost all the words in the support of PXn .
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In other words, the overall probability mass of those words that are not covered can
be made arbitrarily small. This requirement is a little weaker if compared to the con-
ventional definition of covering radius, which dictates (as interpreted probabilistically
under full-support covering distribution) the probability of all uncovered words being
zero.

3. A sufficient condition for the minimization of Ω̄Y‖X(R) and ΩY‖X(R).
The previous section shows that the asymptotic minimum covering radius can be
determined by finding

inf
Y(S)

Ω̄Y‖X(R) and inf
Y(S)

ΩY‖X(R).(9)

A natural query following this result is “What is the minimizer for (9)?” In our view,
there may not exist a universal solution for this query (since in the spectrum formula,
there is no restriction on the distance measure and code alphabet, as well as codeword-
selection set and covering distribution.) However, when the distance measure µn(·, ·)
is symmetric, and a full-support uniform covering distribution under finite alphabet
is taken, a sufficient condition under which the uniform Y (over the codeword set) is
indeed the desired minimizer can be established. We justify this finding as follows.

By rewriting the spectrum formula as

Ω̄Y‖X(R)
�
= inf

{
a ∈ 
 : lim sup

n→∞
EXn

[
Pr

(
1

n
µn(X

n, Y n) > a

∣∣∣∣Xn

)M
]
= 0

}

= inf

{
a ∈ 
 : lim sup

n→∞

∑
xn∈Xn

1

qn
PY n [yn ∈ Sn : xn �∈ Bna(y

n)]
M

= 0

}
,

where q
�
= |X |, we note that if for any a,∑

xn∈Xn

PY n [yn ∈ Sn : xn �∈ Bna(y
n)]

M
(10)

is minimized by uniform Y n over Sn, so is Ω̄Y‖X(R). The next lemma then gives the
basis for the validity of (10) being minimized by the Y n that is uniformly distributed
over Sn.

Lemma 3.1. The function (x1 + x2 + · · · + xk)
M is convex4 in (x1, x2, . . . , xk)

over any pregiven convex set for any positive integer M .
Proof. We prove this lemma by induction.
1. M = 1. The function (x1+x2+· · ·+xk) is apparently convex in (x1,x2,. . . ,xk)

over the desired convex set.
2. Assume that the above claim holds for (M − 1). Then

λ(x1 + · · ·+ xk)
M + (1− λ)(y1 + · · ·+ yk)

M

−[λ(x1 + · · ·+ xk) + (1− λ)(y1 + · · ·+ yk)]
M

≥ λ(x1 + · · ·+ xk)
M + (1− λ)(y1 + · · ·+ yk)

M

− [λ(x1 + · · ·+ xk)
M−1 + (1− λ)(y1 + · · ·+ yk)

M−1
]

4A subset of real vector space is said to be convex if x ∈ A and y ∈ A imply that λx+(1−λ)y ∈ A
for all λ ∈ [0, 1]. A real-valued function f(x) that is defined over a convex set A is called a convex
function if for all λ ∈ [0, 1], and for all x and y in A, f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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×[λ(x1 + · · ·+ xk) + (1− λ)(y1 + · · ·+ yk)]

= λ(1− λ)(x1 + · · ·+ xk)
M + λ(1− λ)(y1 + · · ·+ yk)

M

−λ(1− λ)(x1 + · · ·+ xk)
M−1(y1 + · · ·+ yk)

−λ(1− λ)(x1 + · · ·+ xk)(y1 + · · ·+ yk)
M−1

= λ(1− λ)[(x1 + · · ·+ xk)− (y1 + · · ·+ yk)]

× [(x1 + · · ·+ xk)
M−1 − (y1 + · · ·+ yk)

M−1
] ≥ 0.

Lemma 3.2. Under the assumption that |X | < ∞,∑
xn∈Xn

PY n [yn ∈ Sn : xn �∈ Bna(y
n)]

M

is a convex function in PY n over the convex set{
(PY n(yn1 ), . . . , PY n(ynN )) ∈ [0, 1]N :

N∑
i=1

PY n(yni ) = 1

}
,

where N = |Sn|.
Proof. This can be proved by Lemma 3.1 and the observation that a finite sum

of convex functions is convex.
When the distance measure is symmetric, the quantity (10) can be reformulated

as ∑
xn∈Xn

PY n [Sn/Bna(x
n)]

M
,(11)

where “/” represents the set subtraction operation. Since it is a convex function
defined over a convex set, we can use the Lagrange multiplier technique and the
Kuhn–Tucker theorem [1, Thm. A.6] to obtain its global minimizer. To be specific,
let

f
(
PY n(Sn)

) �
=

∑
xn∈Xn

PY n [Sn/Bna(x
n)]

M
+ λ

( ∑
yn∈Sn

PY n(yn)− 1

)
.

Then

∂f
(
PY n(Sn)

)
∂PY n(yn)

=
∑

xn∈Xn

M · PY n [Sn/Bna(x
n)]

M−1 · 1 {yn ∈ Sn/Bna(x
n)}+ λ

= M ·
∑

xn∈Xn

PY n [Sn/Bna(x
n)]

M−1 · 1 {xn �∈ Bna(y
n)}+ λ = 0,(12)

where (12) follows from the symmetry of the distance measure, and 1(·) is the set
indicator function. Taking uniform PY n on Sn into the above equation, we obtain

∑
xn∈Xn

(
1− |Sn ∩ Bna(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Bna(y
n)} = − λ

M
.(13)

Therefore, if the left-hand side of (13) is independent of yn ∈ Sn, then uniform Y n

over Sn is indeed a solution of (12) (and minimizes Ω̄Y‖X(R)).



558 PO-NING CHEN AND YUNGHSIANG S. HAN

We conclude the above discussions in the next corollary.
Corollary 3.3. Assume that |X | < ∞ and the (generalized) distance measure

µ(·, ·) is symmetric. If, for every n,

br(y
n) = br(z

n)(14)

holds for every r and every yn, zn in Sn, then uniform Y over S minimizes Ω̄Y‖X(R),
where

br(y
n)

�
=

∑
xn∈Xn

(
1− |Sn ∩ Br(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Br(y
n)} .

The condition in (14) may not hold in general. A quick example is to take
the codeword set S3 = {000, 001, 011, 111} under the symmetric Hamming distance
metric and binary code alphabet. In such a case, b1(000) = b1(111) = 2 �= b1(001) =
b1(011) = 2.5 for M = 2. As a result, the best codeword-selecting distribution that
minimizes (11) is PY 3(000) = PY 3(111) = 1/2 and PY 3(001) = PY 3(011) = 0, which
is uniformly distributed only over a proper subset of S3.

Two queries can be further studied: whether it suffices to always take Y to be a
uniform distribution over a subset of S as hinted by the previous example and whether
sufficient condition (14) is also necessary. The proof of Theorem 2.4 indicates that
the answer to the first query is affirmative; so to speak, taking Y to be the one

chosen in the proof of Theorem 2.4, which is uniformly distributed over C(m)
n for

max1<i≤mNm ≤ n < max1<i≤(m+1) Nm, and following the proof of Lemma 2.2, we
obtain

Ω̄Y‖X(R+ γ)− ε ≤ sup
0≤α<1

lim sup
n→∞

1

n
ρα(M,Sn‖Xn) ≤ Ω̄Y‖X(R) + ε

for every γ > 0 and arbitrary ε > 0. By noting that Ω̄Y‖X(R) = limγ↓0 Ω̄Y‖X(R+ γ),
except for countably many points in R, the first query is answered. We, however,
have no answer to the second query. From several example trials, it seems affirmative
as well. Nevertheless, equipped with the corollary, we can determine the asymptotic
minimum covering radius for the examples in the next section.

4. Asymptotic minimum covering radius for specific block coding sche-
mes. In this section, we demonstrate the usage of the new formula to investigate the
asymptotic minimum covering radius in terms of two examples: arbitrary block codes
under J-ary quantized channels and constant weight codes under Hamming distance.

4.1. Arbitrary block codes under J-ary quantized channels. We consider
a model that is frequently used in practical channels (especially when the soft-decision
decoding scheme is performed [4]).

Assume that a binary block code is transmitted over a memoryless channel whose

output takes values from NJ
�
= {0, 1, . . . , J − 1}; i.e., the output of the channel is

quantized to J levels. The distance measure for quantized channels is defined as

µn(x
n, yn) =

n−1∑
i=0

|xi − yi|,

where xn and yn are in Nn
J . The codeword set and the entire space are, respectively,

Sn = {0, (J − 1)}n and Xn = Nn
J .
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To derive the asymptotic minimum covering radius for this channel, we need to
first show that br(y

n) is independent of yn ∈ Sn (and, therefore, uniform Y n over Sn
for each n minimizes Ω̄Y‖X(R)). We justify this claim as follows.

Observe that for any yn ∈ Sn,
(i) xn ∈ Br(0) iff zn ∈ Br(y

n), where 0 represents the all-zero element, and
zi = |yi − xi| for 0 ≤ i ≤ n− 1;

(ii) furthermore, for any element xn ∈ Xn, un ∈ Sn∩Br(x
n) iff vn ∈ Sn∩Br(z

n),
where zn is defined the same as above, and

vi
�
=

{
(J − 1)− ui if xi �= zi,
ui otherwise

for 0 ≤ i ≤ n− 1.

Thus,

br(0) =
∑

xn∈Xn

(
1− |Sn ∩ Br(x

n)|
|Sn|

)M−1

· 1 {xn �∈ Br(0)}

=
∑

zn∈Xn

(
1− |Sn ∩ Br(z

n)|
|Sn|

)M−1

· 1 {zn �∈ Br(y
n)} = br(y

n)

for all yn ∈ Sn.
Now, for uniform Y n over Sn = {0, J−1}n (and also uniform Xn over Xn = Nn

J ),

Ω̄Y‖X(R)

= inf

{
a ∈ 
 : lim sup

n→∞
1

Jn

∑
xn∈Xn

PY n [yn ∈ Sn : yn �∈ Bna(x
n)]

M
= 0

}

= inf

{
a ∈ 
 : lim sup

n→∞

∑
xn∈Xn

1

Jn

[
1− |Sn ∩ Bna(x

n)|
2n

]M
= 0

}

= inf

{
a ∈ 
 : lim sup

n→∞

∑
n0+n1+...
+n

J−1
=n

n!
n0!n1!···nJ−1

!

Jn

[
1− fna(n0, n1, . . . , nJ−1

)

2n

]M
= 0

}
,

where ni is the number of occurrence i’s in xn, and fna(n0, n1, . . . , nJ−1
) is the sum-

mation of all
(
n0

i0

)(
n1

i1

) · · · (nJ−1

i
J−1

)
satisfying 0 ≤ ij ≤ nj for 0 ≤ j ≤ J − 1 and∑J−1

j=0 [ijj+(nj − ij)(J − j− 1)] ≤ na. By using typical asymptotic approximation for
binomial coefficients, we obtain that for v0 + v1 + · · ·+ v

J−1
= 1,

g(v0, v1, . . . , vJ−1
, a)

�
= lim

n→∞
1

n
log2

2n

fna(nv0, nv1, . . . , nvJ−1
)
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=




∞ if a <
J−1∑
j=0

vj ·min{j, (J − 1)− j},

1− max
(δ0,...,δJ−1

)∈DJ

[
v0H(δ0) + · · ·+ v

J−1
H(δJ−1)

]

if

J−1∑
j=0

vj ·min{j, (J − 1)− j} ≤ a ≤ J − 1

2
,

0 if a >
J − 1

2
,

where H(x)
�
= − x log2(x) − (1 − x) log2(1 − x) is the binary entropy function, DJ

consists of all (δ0, . . . , δJ−1) satisfying 0 ≤ δj ≤ 1 for 0 ≤ j ≤ J−1 and
∑J−1

j=0 [vjδjj+
vj(1 − δj)(J − j − 1)] ≤ a, and the result for a > (J − 1)/2 follows by taking δ1 =
δ2 = · · · = δJ−1 = 1/2. Thus,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M=enR, {0, J − 1}n)(15)

= inf

{
a ∈ 
 :

R

log(2)
> max

v0+···+v
J−1

=1
g(v0, . . . , vJ−1

, a)

}
.

We can then derive the asymptotic minimum covering radius for different J values
based on (15).

Case A. For J odd,

max
v0+···+v

J−1
=1

g(v0, . . . , vJ−1
, a) =

{ ∞ if a < J−1
2 ,

0 if a ≥ J−1
2 ,

and, therefore,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR, {0, J − 1}n) = J − 1

2
for 0 < R ≤ log(2).

It can easily be seen that (J − 1)/2 is the trivial lower bound for the asymptotic
minimum covering radius at J odd, since any codeword in {0, J − 1}n require radius
(J − 1)n/2 to cover the all-[(J − 1)/2] element. Here, in lieu of the new formula, we
show that (J − 1)/2 is actually the asymptotic minimum covering radius at J odd.

Case B. J is even.
Since the case of J = 2 reduces to a simple binary block code under Hamming

distance, for which the derivation of its asymptotic minimum covering radius can be
easily computed through combinatorial approaches, we will therefore focus on the case
of J ≥ 4.

To derive the asymptotic minimum covering radius, we first establish a general

lower bound by using the middle point xnmid

�
= (J/2−1, J/2−1, . . . , J/2−1) as follows:

Ω̄Y‖X(R)

= inf


a ∈ 
 : lim sup

n→∞
1

Jn

∑
n0+n1+···
+n

J−1
=n

n!

n0!n1! · · ·nJ−1
!

[
1− |Sn ∩ Bna(x

n)|
2n

]M
= 0



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≥ inf

{
a ∈ 
 : lim sup

n→∞
1

Jn

[
1− |Sn ∩ Bna(x

n
mid)|

2n

]M
= 0

}

= inf

{
a ∈ 
 :

R

log(2)
> 1−H

(
a−

(
J

2
− 1

))}
for 0 < R ≤ log(2).

We then observe that for v0 + v1 + v2 + v3 = 1 and 1 ≤ a ≤ 3/2,

g(v0, v1, v2, v3, a) = 1− max
(δ0,...,δ3)∈D4

[v0H(δ0) + · · ·+ v3H(δ3)] ≤ 1−H(a− 1),

where the last step follows by taking 1 − δ0 = 1 − δ1 = δ2 = δ3 = a − 1, which is in
the range of the maximization operation. Thus, for 0 < R ≤ log(2),

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M=enR, {0, 3}n)

= inf

{
a ∈ 
 :

R

log(2)
> max

v0+v1+v2+v3=1
g(v0, v1, v2, v3, a)

}

≤ inf

{
a ∈

[
1,

3

2

]
:

R

log(2)
> max

v0+v1+v2+v3=1
g(v0, v1, v2, v3, a)

}

≤ inf

{
a ∈

[
1,

3

2

]
:

R

log(2)
> 1−H(a− 1)

}
.

As a result, the general lower bound is tight at J = 4.
For J ≥ 6 even, there seems no simple expression for the asymptotic minimum

covering radius. However, one can still obtain a numerically plotted curve for the
asymptotic minimum covering radius at J ≥ 6 even, whenever the algorithmic com-
plexity of the optimization operation for (15) is feasible.

4.2. Binary constant weight codes under Hamming distance. Define the
codeword set as

Sn(w) = {yn ∈ {0, 1}n : W (yn) = w} ,
where W (yn) is the number of 1’s in yn. The covering space is assumed to be the
entire space Xn = {0, 1}n. Let the distance measure µn(·, ·) be the n-fold Hamming
distance.

In this case, the asymptotic minimum covering radius for codeword set Sn(nv)
is apparently lower bounded by max{v, 1 − v}, since the code must cover both the
all-zero element and the all-one element. Now, in lieu of the new formula, we can
show that max{v, 1− v} is indeed the exact asymptotic minimum covering radius for
constant weight codes.

Define fr(w, η)
�
= |Sn(w) ∩ Br(x

n)|, where η = W (xn). Then, for yn ∈ Sn(w),

br(y
n) =

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1 [ ∑

{xn : W (xn)=η}
1 {xn �∈ Br(y

n)}
]

=

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1

(|Sn(η)| − |Sn(η) ∩ Br(y
n)|)

=

n∑
η=0

(
1− fr(w, η)(

n
w

)
)M−1 [(

n

η

)
− fr(η, w)

]
,
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which is apparently independent of yn ∈ Sn(w) for every r. Hence, uniform Y n over
Sn(w) for each n minimizes Ω̄Y‖X(R).

Now, from the observations that for fixed xn with W (xn) = η the total number
of yn in Sn(w) satisfying that the weights (1’s) of xn and yn coincide with each other
in exactly d positions is equal to

(
η
d

)(
n−η
w−d

)
, and that W (xn) + W (yn) − 2d is the

Hamming distance between xn and yn with d coincidences in their weights, we get5

fr(w, η) =
∑

{
d : 0≤d≤min{w,η}

0≤w−d≤n−η, 0≤w+η−2d≤r

}
(
η

d

)(
n− η

w − d

)

=
∑

{
i :

0≤(w+η−i)/2≤min{w,η}
0≤(w−η+i)/2≤n−η, 0≤i≤r

}
(

η
w+η−i

2

)(
n− η
w−η+i

2

)
× 1 {(w + η − i) even}

=

min{r, w+η, 2n−w−η}∑
i=|w−η|

(
η

η−w+i
2

)(
n− η
w−η+i

2

)
× 1 {(w + η − i) even} .(16)

Accordingly, for uniform Y over S(w) (and also uniform X over the entire space),

Ω̄Y‖X(R) = inf

{
a ∈ 
 : lim sup

n→∞
1

2n

∑
xn∈Xn

PY n [yn ∈ Sn : yn �∈ Bna(x
n)]

M
= 0

}

= inf


a ∈ 
 : lim sup

n→∞
1

2n

n∑
η=0

(
n

η

)[
1− fna(w, η)(

n
w

)
]M

= 0


 .

By using typical asymptotic approximation for binomial coefficients, we obtain6

ḡ(v, v̂, a)
�
= lim

n→∞
1

n
log2

(
n
nv

)
fna(nv, nv̂)

=




H(v)− max
|v−v̂|≤j≤min{a,v+v̂,2−(v+v̂)}

[
v̂H

(
v̂−v+j

2v̂

)
+ (1− v̂)H

(
v−v̂+j
2(1−v̂)

)]
if |v − v̂| ≤ a ≤ 1,

∞ if 0 ≤ a < |v − v̂|

=




H(v)− [v̂ ·H(1− v) + (1− v̂) ·H(v)] if v + v̂ − 2vv̂ ≤ a ≤ 1,

H(v)−
[
v̂ ·H ( v̂−v+a

2v̂

)
+ (1− v̂) ·H

(
v−v̂+a
2(1−v̂)

)]
if |v − v̂| ≤ a < v + v̂ − 2vv̂,

∞ if 0 ≤ a < |v − v̂|

=




0 if v + v̂ − 2vv̂ ≤ a ≤ 1,

H(v)−
[
v̂ ·H ( v̂−v+a

2v̂

)
+ (1− v̂) ·H

(
v−v̂+a
2(1−v̂)

)]
if |v − v̂| ≤ a < v + v̂ − 2vv̂,

∞ if 0 ≤ a < |v − v̂|.

5By definition, d is the number of coincidences in the weights of xn and yn, and hence 0 ≤ d ≤
min{w, η}.

6The function v̂ · H( v̂−v+j
2v̂

) + (1 − v̂)H( v−v̂+j
2(1−v̂)

) is a concave truncated function of j, and is

maximized at j = v + v̂ − 2vv̂, if |v − v̂| ≤ v + v̂ − 2vv̂ ≤ min{a, v + v̂, 2 − (v + v̂)}. Note that
|v − v̂| ≤ v + v̂ − 2vv̂ ≤ min{v + v̂, 2− (v + v̂)} is valid for every 0 ≤ v, v̂ ≤ 1.
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Thus, for 0 ≤ v ≤ 1/2 and 0 < R ≤ log(2),

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR,Sn(nv)

)
= Ω̄Y‖X(R)

= inf

{
a ∈ 
 :

R

log(2)
> max

0≤v̂≤1
g(v, v̂, a)

}
= 1− v,

where the last step follows from7

max
0≤v̂≤1

g(v, v̂, a) =

{ ∞ if 0 ≤ a < max{v, 1− v} = 1− v,
0 if max{v, 1− v} ≤ a ≤ 1.

Similarly, for 1/2 < v ≤ 1,

sup
0≤α<1

lim
n→∞

1

n
ρα
(
M = enR,Sn(nv)

)
= v.
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