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Introduction 

ÉMultiple access schemes: 

ÅTime division multiple access (TDMA) 

ÅFrequency division multiple access (FDMA) 

ÅCode division multiple access (CDMA) 

ÅOrthogonal frequency division multiple access (OFDM) 

 

ÉLong-Term Evolution (LTE) adopts orthogonal 
multiple access (OMA). 

 

ÉOMA utilizes its orthogonality to achieve a good 
system throughput with simple and structural 
receiver design. 
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Introduction 

ÉIn order to improve system throughput, non-
orthogonal multiple access (also known as multi-user 
superposed transmission (MUST)) has been 
discussed. 

ÉMUST allows transmission of information from 
several users at the same frequency band or at the 
same time slot. 

ÉAdvance receiver design such as maximum likelihood 
(ML) receiver or successively interference 
cancellation (SIC) receiver is necessary for MUST. 

ÉTwo kinds of MUST schemes will be introduced: 
¡ Non-orthogonal Multiple Access (NOMA) 

¢ Rate-adaptive constellation Expansion  Multiple Access 
(REMA)  
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Introduction to NOMA 

ÉNon-orthogonal Multiple Access (NOMA) 
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* Transmission signals: 

where       is the signal to UE#1, and       to UE#2, and                  and                  
are both unity.  

 zὖ ὖ ὖ, where ὖ is total transmission power of the BS. 



Introduction to NOMA 

ÉReceived signal at UE#Ὥ 

 

 

where Ὤ is the channel gain between BS and UE#Ὥ, and ὲ is 
an additive white Gaussian noise (AWGN) with variance ὔ 

 

ÉUE receives not only the desired signal but also the 
interference signal to the other UE, so it should have 
the capability to cancel the interference. 
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Introduction to NOMA 

ÉUnder the assumption that UE#1 decodes successfully and no 
error propagation occurs, the transmission rates of UE#1 and 
UE#2 in NOMA  are given by: 

 

 

 

É In comparison, OMA separates transmission bandwidth. By 
assuming ‌ portion of the entire transmission bandwidth is 
assigned to UE#1 and ρ ‌ to UE#2, their transmission rates 
are given by: 
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Introduction to NOMA 

ÉExemplified comparison between OMA and NOMA 
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OMA NOMA 

Ὑ 1.6646 2.1962 

Ὑ  0.25 0.3685 

OMA    Ą ‌ πȢυȟ ὖ ὖ πȢυ 
NOMA Ą ὖ πȢςȟ  ὖ πȢψ 



Introduction to NOMA 

ÉExemplified comparison between OMA and NOMA 

 

10 

Network Technology Laboratory  



Introduction to NOMA 

ÉTo combine NOMA with MIMO 

 

 

 

 

 

 

 

 

ÉMMSE-IRC: Suppress the inter-beam interference 

ÉSIC: Cancel intra-beam interference 
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Introduction to NOMA 

ÉSetting 1: Pulse-amplitude modulation (PAM) 

ÉSetting 2: Each of the two UE modulation symbols (i.e., ί and 
ί) takes the Gray-mapping constellation. 

The resultant extension constellation of MIMO NOMA becomes 
unequal distance and non-Gray-mapping. 
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Introduction to REMA 

ÉA novel non-orthogonal transmission scheme 
was proposed by Huawei Technologies Co. 
Ltd., which is named rate-adaptive 
constellation expansion multiple access 
(REMA). 

 

ÉThe idea behind REMA is to use existing 
equal-distance constellation at the combining 
stage, together with either natural-mapping 
or Gray-mapping. 
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Receiver Design in Typical MIMO system 

ÉA typical MIMO system can be modeled as: 

 
where ἒ is the channel matrix, ὀ is the transmitted signal 
vector, and ἶ denotes the AWGN with mean zero and variance 

Ɑ . 

ÉLinear receiver 

üZero-forcing (ZF) 

 

 

üMinimum mean square error (MMSE) 
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Receiver Design in Typical MIMO system 

 

 

ÉSymbol-SIC (S-SIC) 

 

 

 

ÉCodeword-SIC (CWIC) 

15 

Network Technology Laboratory  



CWIC Receiver in NOMA 

 

 

 

 

 

 

 

ÉUE#1 is closer to BS than UE#2, so it is reasonably 
anticipated that UE#1 has a better channel gain than 
UE#2.  

ÉSo BS allocates more power to UE#2, resulting that 
ὖ ὖ. 

 

 

 

16 

Network Technology Laboratory  



CWIC Receiver in NOMA 

ÉFar UE: Single UE detection (SUD) 

 

 

 

 

 

 

 

 

üSince ί to UE#1 has a smaller power than ί, UE#2 treats 
ί as an interference and directly estimates its desired 
signal ί. 
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Treat as noise 



CWIC Receiver in NOMA 

 

 

 

 

 

 

ÉNear UE: CWIC with SUD 
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Collect the soft information of the interfered signal and then decode it. 

Subtract the re-encoded, re-modulated signal from received signal       . 

Decode the desired signal (hopefully without interference). 



CWIC Receiver in NOMA 

ÉNear UE: CWIC with Joint ML (JML) 

 

 

 

 

 

üThe near UE detects                                     and generates its 
corresponding LLR via the joint constellation based on  
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CWIC Receiver in NOMA 

ÉIn NOMA system, the desired signal and the 
interference signal come from the same BS; so it is 
possible to provide the scheduling information (such 
as code rates and modulation schemes of both users). 

 

ÉIn case such information is not available, CWIC may 
become infeasible. 
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CWIC Receiver in NOMA 

ÉNear UE: Joint Maximum-Likelihood (JML) Receiver 

 

 

 

 

üIn comparison with CWIC, the JML receiver may perform 
worse but it can be used without knowing the code rate 
for the other user. 
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CWIC Receiver in NOMA 
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ü JML is worse than CWIC with SUD receiver.  
ü The reason is that JML does not adopt interference cancellation. 
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ÉIn NOMA, the combined constellation may have 
unequal distance constellation points because of 
unbalance power allocation. 

ÉIn order to reduce error vector magnitude (i.e., 
receive constellation error), equal distance 
constellation is favored. 
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NOMA with Equal Distance Constellation (EDC-NOMA) 



NOMA with Equal Distance Constellation (EDC-NOMA) 

 

 

 

 

ÉIn order to have equal distance constellation, ὖand 
ὖcannot be arbitrary but fixed. 

 

24 

Network Technology Laboratory  

Encoder 
Block 

Interleaver 
Modulation 

Encoder 
Block 

Interleaver 
Modulation 

ὖ 

ὖ 

UE#1 
information 

UE#2 
information 

UE#1+UE#2 ὖ ὖ 
Combined 

constellation 

2-PAM+2PAM 0.2 0.8 4-PAM 

4-PAM+2PAM 0.2381 0.7619 8-PAM 

8-PAM+2PAM 0.2471 0.7529 16-PAM 

4-PAM+4PAM 0.0588 0.9412 16-PAM 



Rate-adaptive constellation Expansion Multiple Access (REMA) 

 

 

 

 

ÉREMA do the combination of the two information signals at 
the bit level such that the combined symbols are always equal 
distance in the combined extension constellation. 

ÉREMA encodes two information messages to two UEs 
independently, followed by a multiplexing process that 
superposes the coded messages into their allocated positions. 

ÉThe resulting multiplexed column-wise bit patterns are then 
mapped to the specified modulation symbols. 
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ÉExample: 8-PAM 

 

 

 

 

üNote that the protection level of each bit is actually 
different. 

üFor example, for 8-PAM, ὦ is the least likely to be 
erroneously transmitted, while ὦ has the worst bit 
error rate. 

üRow permutation is sometimes added before 
modulation in order to equalize the protection 
capability of each bit.                      
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Rate-adaptive constellation Expansion Multiple Access (REMA) 



Demodulation in REMA 

ÉReceived signal in REMA: 

 
where ὼ is the combined modulated M-PAM signal. 

ïSuppose ὑ bits are allocated to UE#2, which for simplicity 
are assumed to be                            .  

ïThen, for                                  , UE#2 calculates LLRs 
according to:  

 

 

 

 
 

where                   is the set of         -PAM symbols that corresponds to 
UE#2  and 
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Demodulation in REMA 

ÉExample: 1+1 with JML 

 

1.  ὓ τ  and ὑ ρ 
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4-PAM 2-PAM 



Demodulation in REMA 

Near UE Receiver Design 1: JML Receiver 

 

 

 

 

 

where         is the set of M-PAM symbols that corresponds to  

 

ÉCollect LLRs for the desired signal for UE#1 and decode them. 
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