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• In recent years, the multiple-input multiple output (MIMO) system has

attracted enormous interest because it can provide significant capacity

improvement over traditional communication systems.

• To provide a better performance, the soft-output sphere decoding (SD)

algorithm has been used as a support to an outer decoder in MIMO systems.

• At this background, this thesis presents a new soft-output detection

algorithm to further improve the performance of existing methods.
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• Consider an MIMO communication system with NT transmit antennas and

NR receive antennas, where NT ≤ NR.

• At the transmitter, Q coded information bits are mapped onto a complex

constellation O, e.g., QPSK, 16-QAM, etc.
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Figure 1: An MIMO channel model
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• The received symbol vector thus can be written as:

y = Hx+ n (1)

where

x = [x1, · · · , xNT
]T ∈ ONT (2)

is the transmitted symbol vector with E[|xi|2] = 1,

y = [y1, · · · , yNR
]T ∈ C

NR (3)

is the received symbol vector,

n = [n1, · · · , nNR
]T ∈ C

NR (4)

is the independent zero-mean Gaussian-distributed complex noise vector with

common variance N0 per entry, and C denotes the domain of complex

numbers.
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• The channel matrix is

H =




h1,1 · · · h1,NT

... . . . ...

hNR,1 · · · hNR,NT


 ∈ C

NR×NT (5)

• We assume that the elements of channel matrix H are complex Gaussian

variables with zero mean and unit variance and can be perfectly estimated by

the receiver.
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• The ML rule:

x̂ML = arg min
x∈ONT

‖ y −Hx ‖2 (6)

• The sphere decoding (SD) algorithm can significantly reduce the

computational complexity while maintaining the ML performance

x̂ML = arg min
x∈{x : r≥‖y−Hx‖2}

‖ y −Hx ‖2
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• As contrary to the hard-output SD algorithm that targets to find x̂ML, the

soft-output SD algorithm provides soft-valued log-likelihood ratios (LLR) (in

order to cooperate with an outer coder).

• For clarity, we present the soft-output SD algorithm from two angles:

– Derivation of the Max-Log LLRs

– Computation of Max-Log LLRs via a Tree Search
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Derivation of the Max-Log LLRs

• Denote by xj,b the b-th bit in the constellation point corresponding to the

j-th component of vector x, where 1 ≤ j ≤ NT and 1 ≤ b ≤ Q.

• The Max-Log LLRs for bit xj,b is given by

L(xj,b) = min
x∈X (0)

j,b

‖ y −Hx ‖2 − min
x∈X (1)

j,b

‖ y −Hx ‖2 (7)

where X (0)
j,b and X (1)

j,b are respectively the sets of symbol vectors that have the

b-th bit in the j-th entry equal to 0 and 1.
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• It can be easily seen that one of the two minima in (7) is

λML =‖ y −HxML ‖2 (8)

which is the metric associated with the ML solution xML.

• Denote the b-th bit in the j-th entry of xML as xML
j,b ∈ {0, 1}, and let its

binary complement be denoted by xML
j,b .

• Then, the minimum, other than λML in (7), can be written as

λML
j,b = min

x∈X(
xML
j,b )

j,b

‖ y −Hx ‖2 (9)

• By combining (8) and (9), the Max-Log LLRs can be equivalently expressed

as

L(xj,b) =




λML − λML
j,b , if xML

j,b = 0;

λML
j,b − λML, if xML

j,b = 1.

(10)
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Computation of Max-Log LLRs via a Tree Search

• We next transform the computations of (8) and (9) into a tree search

problem.

• The channel matrix H is QR-decomposed as

H = Q


 R

0(NR−NT )×NT


 (11)

where the NR ×NR matrix Q is unitary, and R is an NT ×NT upper

triangular matrix with diagonals being real-valued.

• Multiplying (1) by QH leads to a modified input-output relation as

ỹ = Rx+ ñ (12)

where ỹ and ñ respectively contain the first NT components of QHy and

QHn.
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• In matrix form, (12) can be written as




ỹ1
...

ỹNT


 =




r1,1 r1,2 · · · r1,NT

0 r2,2 · · · r2,NT

... . . . . . . ...

0 · · · 0 rNT ,NT







x1
...

xNT


+




ñ1

...

ñNT


 (13)

• As Q is unitary, ñ remains independent Gaussian distributed with zero mean

and common variance N0.

• Hence, (6) can be equivalently rewritten as

x̂ML = arg min
x∈ONT

‖ ỹ −Rx ‖2= arg min
x∈ONT

NT∑
i=1

∣∣∣∣∣ỹi −
NT∑
j=i

ri,jxj

∣∣∣∣∣
2

(14)
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• After the preprocessing stage, the equivalent characterizations of λML and

λML
j,b can be respectively obtained as

λML = min
x∈ONT

‖ ỹ −Rx ‖2 (15)

and

λML
j,b = min

x∈X(
xML
j,b )

j,b

‖ ỹ −Rx ‖2 . (16)

• Define the partial symbol vector (PSV) as x(k) = [xk, xk+1, . . . , xNT
]T , and

form a tree with nodes marked by the PSVs.

• The nodes at level k are marked by x(k) and the dummy root note is

conveniently marked as x0.
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Figure 2: The tree to be searched by the SD decoder. In this example, NT = 4.
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• We define recursively the partial Euclidean distance (PED) d(x(k)) to be

equal to dk = dk(x
(k)), where

di = di+1 + |ei|2 for i = NT , NT − 1 . . . , k, (17)

and dNT+1 is initialized as 0, and the distance increment (DI) |ei|2 is given by

|ei|2 =
∣∣∣∣∣ỹi −

NT∑
j=i

ri,jxj

∣∣∣∣∣
2

(18)

• It is then clear from the formulas that the PEDs only depend on the PSVs,

and they can be regarded as the branch metrics during the tree search.

• We will introduce two tree traversal strategies for the generation of the LLRs:

– Repeated Tree Search (RTS) strategy

– Single Tree Search (STS) strategy
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Example of BPSK-constellation in the RTS strategy
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Single Tree Search (STS)

• The STS is more efficient than the RTS because it ensures that every node in

the tree is visited at most once.

• It searches for the ML solution and all counter-hypotheses concurrently.

• When a leaf is reached, two situations will be considered:

– If a new ML hypothesis x is found, i.e., d(x) < λML, all λML
j,b ’s, for which

their corresponding xj,b = xML
j,b , are set to the current λML, followed by two

new updates:

λML ← d(x) and xML ← x.

– If d(x) ≥ λML, only the counter-hypotheses have to be checked. In other

words, for all j and b such that xj,b = xML
j,b and d(x) < λML

j,b , the decoder

updates λML
j,b ← d(x).
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Methods for Complexity Reduction for the STS

• Computing the exact LLR values will require a large amount of computational

complexity.

• Three common methods to reduce the computational complexity are:

– LLR Clipping

– Sorting and Regularization

– Run-Time Constraint
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LLR Clipping

•
|L(xj,b)| ≤ Lmax, ∀ 1 ≤ j ≤ NT and 1 ≤ b ≤ Q, (19)

where Lmax is a chosen maximum LLR value.

• Conceptually, the LLR clipping is to restrict the search domain for lattice

points inside the square radius rmax = λML + Lmax.

• It can be anticipated that if Lmax =∞, the LLR clipping returns the exact

max-log LLRs.
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Sorting and Regularization

• Sorting:

– Perform QR-decomposition on HP instead of H, where P is an NT ×NT

column permutation matrix.

– The idea behind sorting is to let the diagonal entries of the upper

triangular matrix R being sorted in ascending order.

– Thus, the stronger streams in term of effective signal-to-noise (SNR) ratio

are closer to the root.

– For this reason, it is referred to as sorted QR-decomposition (SQRD).
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• Regularization:

– If H is in a “poor” condition, sorting may still give high search complexity.

– This problem can be resolved by operating on a regularized channel matrix

 H

αINT


P = QR =


Q1

Q2


R, (20)

where α is a suitably chosen regularization parameter, Q is an

(NR +NT )×NT unitary matrix , R is an NT ×NT upper triangular

matrix, INT
denotes the NT ×NT identity matrix, Q1 is of dimension

NR ×NT and Q2 is of dimension NT ×NT .
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– The system model can then be equivalently transformed to

ỹ = QH
1 y

= QH
1 Hx+QH

1 n

= QH
1 Hx+ αQH

2 x− αQH
2 x+QH

1 n

=
(
QH

1 H+ αQH
2

)
x− αQH

2 x+QH
1 n

= Rx̃+ ñ,

where x̃ = P−1x and ñ = −αQH
2 x+QH

1 n.

– The Max-Log LLRs in (7) can accordingly be approximated by

L(xj,b) ≈ min
x̃∈X (0)

j,b

‖ ỹ −Rx̃ ‖2 − min
x̃∈X (1)

j,b

‖ ỹ −Rx̃ ‖2 (21)

by pretending ñ to be i.i.d. complex Gaussian distributed.
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– Note that the effective noise-plus-(self)-interference (NPI) vector

ñ = −αQH
2 x+QH

1 n (22)

is neither i.i.d. nor complex Gaussian due to the self-interference term

−αQH
2 x.

– In order to get a good approximation, we compute the covariance matrix

of ñ as

K = E[ññH ] =
(
RRH

)−1 |α|2 (|α|2 −N0

)
+N0INT

(23)

where we assume E[xxH ] = INT
, then setting α = ±√N0 corresponds to

an MMSE regularization, yielding K = N0INT
.

– This gives a theoretically conclusive aspect of the so-called MMSE-SQRD

with the requirement that N0 needs to be estimated.
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Run-Time Constraint

• We suppose the maximum number of tree nodes allowed to be visited for the

decoding of an N -symbol-vector block to be denoted by N ·Davg.

• Then, the decoding of the k-th symbol vector can visit at most

Dmax(k) = N ·Davg −
k−1∑
i=1

D(i)− (N − k)NT (24)

nodes for k = 1, 2, . . . , N , where D(i) denotes the number of nodes actually

visited during the decoding of the i-th symbol vector.

• In concept, (24) said that when a symbol vector is decoded, it is allowed to

use all the remaining budget but has to maintain a safety margin (N − k)NT .

• This margin allows the remaining symbols to achieve at least the hard-output

SIC performance.
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• We want to design a new tree traversal strategy that yields almost the same

computational complexity but has better performance.

• The tree traversal strategy that we newly proposed is basically

MMSE-SQRD-based and is a refinement of the Schnorr-Euchner sphere

decoder (SESD).

• We will focus on the QPSK and 16-QAM constellation using Gray mapping.

• Two methods respectively for QPSK and 16-QAM will be proposed.
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New Tree Search Strategy for QPSK

• Observation: Only the paths that generate the LLR values are necessary to

be extended.

• A QPSK symbol only carries two information bits, so once the best path at

the current level is decided, only its top three successor paths need to be

extended.

• For the paths other than the best path at the current level, only the best

successor path needs to be extended.
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An example of our proposed method
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New Tree Search Strategy for 16-QAM using Gray Code Mapping

• Since the previous approach provides no visible improvement for 16-QAM, a

new method has been proposed.

• We first find the ML solution by using the hard-output SD algorithm.

• Then, we follow the ML path to decide which paths are relevant to the LLR

computations and hence need to be extended.

• Only four successor paths corresponding to the counter-hypotheses (as

contrary to the ML path) need to be extended in addition to the expansion of

the ML path itself.

• Among the four paths that include all the counter-hypotheses corresponding

to the ML symbol, the best path will be further extended.

• Further extension along this path only includes the best path.
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16-QAM constellation
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16-QAM constellation
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16-QAM constellation
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16-QAM constellation
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16-QAM constellation
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16-QAM constellation
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Illustration of the proposed algorithm for the 16-QAM constellation
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• Flat fading MIMO channels with NT = NR = 4

• The outer code is a turbo code with rate R = 1/2.

• The codeword lengths for the QPSK and 16-QAM constellations are 1000

bits and 2000 bits, respectively, such that 500 symbols are transmitted for

both cases for a block of N = 125 symbol vectors.
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Effect of LLR Clipping
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Figure 3: The LLR clipping under the single tree search (STS) strategy for the QPSK modulation.

The numbers marked next to the nodes correspond to the used Lmax values.
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Figure 4: The LLR clipping under the single tree search (STS) strategy for the 16-QAMmodulation.

The numbers marked next to the nodes correspond to the used Lmax values.
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Effect of Sorting and Regularization
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Figure 5: Comparisons of unsorted QRD, SQRD and MMSE-SQRD preprocessing applied to the

STS for the QPSK modulation.
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Figure 6: Comparisons of unsorted QRD, SQRD and MMSE-SQRD preprocessing applied to the

STS for the 16-QAM modulation.
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Effect of Run-time Constraints
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Figure 7: Impact of the run-time constraint on the STS SESD (with MMSE-SQRD preprocessing)

for the QPSK modulation.

47



3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

0.1
0.2

0.3

0.5

0.8

1.2

1.2

0.8 1.2

0.3 0.5 0.8 1.2

0.1 0.2 0.3 0.5 0.81.2

Minimum required SNR in dB for BLER=0.01

A
ve

ra
ge

 n
um

be
r 

of
 v

is
ite

d 
no

de
s

 

 
Davg = 256
Davg = 128
Davg = 64
Davg = 32
Davg = 16

Figure 8: Impact of the run-time constraint on the STS SESD (with MMSE-SQRD preprocessing)

for the 16-QAM modulation.
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Effect of the New Tree Traversal Strategy
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Figure 9: New tree traversal algorithm for the QPSK modulation.

49



3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

0.1
0.2

0.3

0.5

0.8

1.2

1.2

0.8 1.2

0.3 0.5 0.8 1.2

0.1 0.2 0.3 0.5 0.81.2

Minimum required SNR in dB for BLER=0.01

A
ve

ra
ge

 n
um

be
r 

of
 v

is
ite

d 
no

de
s

 

 
Davg = 256
Davg = 128
Davg = 64
Davg = 32
Davg = 16
New Algorithm

Figure 10: New tree traversal algorithm for the 16-QAM modulation.
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• This thesis presents new soft-output algorithms for MIMO systems as a

support to an outer coder.

• At the current stage, we only deal with the QPSK and 16-QAM modulations.

It should be interesting to see whether there exists a systematical method

that can be extendably applied to to all square QAM modulations.
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