Optimal Power Allocation for \((N, K)\)-limited Access Channels

Prepared by Shih-Wei Wang

Advisory by Prof. Po-Ning Chen and Prof. Chung-Hsuan Wang

In Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Institute of Communications Engineering

National Chiao Tung University

Hsinchu, Taiwan 300, R.O.C.

E-mail: shihwei.wang@ieee.org

April, 2012
Abstract

In this dissertation, we consider a system that consists of N independent parallel channels, where the receiver starts to decode the information being transmitted when it has access to at least K of them. We refer to this system as the (N, K)-limited access channel. No prior knowledge for the distribution about which transmissions will be received is assumed. In addition, both the channel inputs and channel disturbances can be arbitrary, except that the mutual information function for each channel is assumed strictly concave with respect to the input power. Hence, the channel capacity below which the code rate is guaranteed to be attainable by a sequence of codes with vanishing error can be determined by the minimum mutual information among any K out of N channels. We then investigate the power allocation that maximizes this minimum mutual information subject to a total power constraint. As a result, the optimal solution can be determined via a systematic algorithmic procedure by performing at most K single-power-sum-constrained maximizations. Based on this result, the close-form formula of the optimal power allocation for an (N, K)-limited access channel with channel inputs and additive noises respectively scaled from two independent and identically distributed random vectors of length N is subsequently established, and is shown to be well interpreted by a two-phase water-filling principle. Specifically, in the first noise-power re-distribution phase, the least $N - K$ noise powers (equivalently, second moments) are first poured (as noise water) into a tank consisting of K interconnected unit-width vessels with solid base heights respectively equal to the remaining K largest noise powers. Afterwards
those W vessels either with noise water inside or with solid base height equal to the new water surface level are subdivided into $N - K + W$ vessels of rectangular shape with the same heights (as the water surface level) and widths in proportion to their noise powers. In the second signal-power allocation phase, the heights of vessel bases will be first either lifted or lowered according to the total signal power and channel mutual information functions, followed by the usual signal-power water-filling scheme. The two-phase water-filling interpretation then hints that the degree of “noisiness” for a general (possibly, non-additive and non-Gaussian) limited access channel might be identified by composing the derivative of the mutual information function with its inverse.
Contents

Abstract

1 Introduction

2 System Model for an \((N, K)\)-Limited Access Channel

3 Analysis of the Optimal Power Allocation

 3.1 Determination of the best power allocation \(p^*\) corresponding to a given index set \(\mathcal{B}\)

 3.2 Determination of the Optimal Maximal-Mutual-Information Index Set \(\mathcal{A}\) and the Optimal Power Allocation \(p^*\)

4 Optimal Power Allocation over Additive Noise Channels

5 Implications from the Optimal Power Allocation

6 Concluding Remarks

A Proofs of Lemma 2 and Theorem 1

B Proof of Theorem 2
C Proofs of the Theorem, Lemmas and Corollaries in Chapter 5

C.1 Proof of Theorem 4 .. 66
C.2 Proof of Lemma 3 .. 66
C.3 Proof of Corollary 1 ... 68
C.4 Proof of Lemma 4 .. 69
C.5 Proof of Corollary 2 ... 69
C.6 Proof of Lemma 5 .. 71
C.7 Proof of Observation 1 72

Bibliography ... 73

About the Author ... 78
Chapter 1
Introduction

A fundamental issue in multiple access channels is power allocation under a total power constraint. In the literature, the best known result in this subject is perhaps the water-filling power allocation principle obtained by maximizing the capacity of parallel additive white Gaussian noise (AWGN) channels [10]. An extension to additive color Gaussian noise channels has later been studied and was found to also follow the water-filling principle over the color spectra of the noises [8]. Recently, by characterizing the relationship between mutual information and minimum mean square error (MMSE) [11], the optimal power allocation for parallel AWGN channels with arbitrary input (possibly finite) has been established, resulting in a new graphical power allocation interpretation called the mercury/water-filling principle [18]. In light of this new finding, the optimal power allocations respectively for multi-user downlink orthogonal frequency-division multiplexing (OFDM) channels [19] and multiple-input-multiple-output (MIMO) channels [23] with arbitrary inputs in the presence of additive white Gaussian background noises are subsequently obtained and found to follow variations of mercury/water-filling principle.

Instead of assuming complete knowledge on channel statistics, a channel could have a number of states with unknown distribution. These channels are classified as compound channels as they are compounds of channels parameterized by their states [9], [14], [34].
Since the channel state of a compound channel is only known to be an element of some given set, its capacity below which the code rate is guaranteed to be attainable by a sequence of codes with vanishing error is then determined by the minimum mutual information among all stated channels. Different sets of channel states have been considered in the literature, and their respective optimal power allocations that maximize the minimum mutual information have been derived.

In [21], the states for an MIMO Gaussian compound channel are controlled by the fading parameter within an “isotropic” set, and the optimal power allocation that maximizes the minimum mutual information with respect to Gaussian inputs is shown to be uniform. In [31] and [33], the channel states for multiple-input-single-output (MISO) and multiple-input-multiple-output (MIMO) Gaussian compound channels are parameterized again by the channel fading but are now “ellipsoid” in nature, and the optimal strategy for power allocation becomes beamforming for Gaussian inputs. In [22], the authors model the channel state as the phase of the fading parameter in an MIMO Gaussian compound channel, and obtain that the covariance matrix of the Gaussian input that maximizes the capacity is diagonal. In [5], the channel capacity of MIMO Gaussian compound channels with partially known distribution in channel matrix is investigated. In [32], by considering a parallel Gaussian compound channel where the channel states are determined by the amplitudes of fading parameters, the power allocation that achieves a capacity lower bound obtained via Lagrange duality is proposed. When arbitrary inputs rather than Gaussian ones are considered for these existing results over compound channels, the new finding in [18] may lead to interesting extensions.

In this dissertation, we consider a compound channel with the channel state being a binary vector of length \(N \). Although additive Gaussian noises are appropriate models for general physical channels, and thus are commonly assumed in the power allocation literature
experimental measurements in certain environments show that the ambient noise may be non-Gaussian distributed. These environments include indoor and urban radio channels [3] [27], underwater communication systems [20], power line channels [36] and digital subscriber lines [7]. We therefore assume that the channel disturbances can be arbitrary, not necessarily additive or Gaussian, and hence the results of the above literatures based on Gaussian compound channels cannot be applicable to our channel.

The channel states that we consider are decided according to whether or not the transmission signals can reach the receiver end. A straightforward scenario for this state model is a packet switched network, where packets can be lost during transmission [1]. In a highly mobile system, however, the transmission signals can also be missed by a moving mobile terminal. In certain situations, the receiver may still be required to recover the transmitted information from its partial receptions [15,24,25]. This raises the question of what the optimal power allocation principle will be for a compound channel with arbitrary input and partially delivered receptions. Notably, since the set of channel states we consider is no longer convex, the traditional techniques [5,21,22,31–33] used to solve the power allocation problems based on a convex channel state space in compound channels cannot be applied and an alternative approach should be taken.

Specifically, among N individual transmissions, possibly parallely or temporally, we assume that the receiver will begin to recover the information being transmitted when it has access to at least K of them. Since we assume the channel disturbances can be either non-additive or non-Gaussian, to find the optimal power allocation principle for this compound channel seems tricky. We then find that if the mutual information satisfies a certain concavity condition (cf. Assumption 1 in Chapter 2), the optimal power allocation can be obtained algorithmically by solving at most K Lagrange-multiplier maximizations (see Theorem 2). To demonstrate the value of the proposed algorithm in complexity reduction, comparison
between the proposed algorithm and a representative brute force method is discussed afterwards. Then, following the proposed algorithm, we further establish that when channel disturbances, in addition to independence, are reduced to being additive with distributions scaled from a common random variable, the optimal power allocation can be directly obtained from a *two-phase water-filling* process if the arbitrary channel inputs are given by the respective component variables in an independent and identically distributed (i.i.d.) random vector, multiplying by the square root of the allocated power. The two-phase water-filling interpretation then hints that the degree of “noisiness” for a general (possibly, non-additive and non-Gaussian) limited access compound channel might be identified by composing the derivative of the mutual information function with its inverse.

The rest of the dissertation is structured as follows. In Chapter 2, we introduce the channel model of the \((N, K)\)-limited access channel considered in this paper as well as the corresponding channel capacity formula. Chapter 3 presents discussion regarding the properties of the optimal power allocation and the algorithm that determines the optimal power allocation. In Chapter 4, we simplify the channel model by further assuming that the channel inputs and additive noises are scaled respectively from two i.i.d. random vectors, which results in a *two-phase water-filling* graphical interpretation for optimal power allocation. In Chapter 5, following the notion of the *two-phase water-filling* interpretation, the degree of “noisiness” for a general limited access channel as well as the optimal power allocation in low- and high-power regimes are addressed. In Chapter 6, we conclude the dissertation and note some possible extensions.
Chapter 2

System Model for an \((N, K)\)-Limited Access Channel

As shown in Figure 2.1, we consider a system that consists of \(N\) parallel channels with unit-power inputs adapted according to \(\sqrt{p} \triangleq [\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_N}]^T\) satisfying \(\sum_{i=1}^{N} p_i \leq P\). In this system, only a certain portion of channel outputs are guaranteed to be successfully received at the receiver end. The system however does not \textit{a priori} know which outputs will be blocked or nullified, nor does the system have the knowledge of the statistics of these blockage. We can realize this assumption by introducing a set of auxiliary multiplicative coefficients \(s_1, s_2, \ldots, s_N\) to the channel outputs, where the \(i\)th channel output is blocked or nullified when being multiplied by \(s_i = 0\), and remains when the multiplicative constant \(s_i\) is equal to 1. It is assumed that by monitoring the channel activities, the receiver can perfectly tell the value of \(s = [s_1, s_2, \ldots, s_N]^T\), where superscript “\(T\)” is the matrix transpose operation.\(^1\) Furthermore, \(s\) will remain unchanged within a codeword transmission period but may vary for different codeword blocks. The receiver will then decode the information based on the receptions \([s \circ Y_1, s \circ Y_2, \ldots, s \circ Y_n]\) if at least \(K\) out of \(N\) components of vector \(s\) are equal to one, where \(Y_i \triangleq [Y_{1,i}, Y_{2,i}, \ldots, Y_{N,i}]^T\) are the channel outputs at time instance

\(^1\)It has been remarked in [14, Thm. 1] that for compound discrete memoryless channels, the capacity remains unchanged even if the receiver knows nothing about \(s\). Therefore, for the channels considered in [14, Thm. 1], the result in this paper can also be applied without prior knowledge of \(s\).
In this setting, we are interested in the optimal power allocation under the system model, the input-output mutual information can be in principle represented by

\[I(\sqrt{p} \circ X; s \circ Y) \]

Each \(E[X_i^2] = 1 \), \(\sum_{i=1}^{N} p_i \leq P \)
Each \(s_i \in \{0, 1\} \), \(\sum_{i=1}^{N} s_i \geq K \)

\(X_i \), \(p_i \) is the codeword length, and operator “\(\circ \)” denotes the matrix Hadamard product [17]. Conversely, the receiver will give up the decoding if \(\sum_{i=1}^{N} s_i < K \). We thus refer to this channel model as an \((N, K)\)-limited access channel.

In this setting, we are interested in the optimal power allocation \(\mathbf{p}^* = [p_1^*, p_2^*, \ldots, p_N^*] \) such that the minimum input-output mutual information subject to \(\sum_{i=1}^{N} s_i \geq K \) is maximized. This quantity is generally regarded as the achievable rate under which the decoding error can be made arbitrarily small.\(^2\)

Under the system model, the input-output mutual information can be in principle represented by

\[I(\sqrt{p} \circ X; s \circ Y) \]

\(^2\)Our focus in this paper is the decoding error given that \(\sum_{i=1}^{N} s_i \geq K \), not the decoding error with respect to a statistically distributed \(s \). Note that since the statistics of \(s \) is assumed unknown, the latter (i.e., the expected probability of decoding error with respect to \(s \)) actually cannot be established.
where \(I(\cdot;\cdot) \) is the mutual information function and \(\sqrt{p} \triangleq [\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_N}]^T \). Here, we overload the notation by denoting the channel output vector corresponding to one channel usage by \(\mathbf{Y} \triangleq [Y_1, Y_2, \ldots, Y_N]^T \), and likewise denote the channel input vector for a single channel usage by \(\mathbf{X} = [X_1, X_2, \ldots, X_N]^T \). The achievable rate that guarantees a vanishing decoding error subject to \(\sum_{i=1}^{N} s_i \geq K \) is therefore optimistically

\[
\max_{\mathbf{X}} \quad \max_{\{p \in \mathbb{R}_+^N: \sum_{i=1}^{N} p_i \leq P\}} \quad \min_{\{s \in \{0,1\}^N: \sum_{i=1}^{N} s_i \geq K\}} \quad I(\sqrt{\mathbf{p}} \circ \mathbf{X}; \mathbf{s} \circ \mathbf{Y}) \tag{2.1}
\]

where \(\mathbb{R}_+ \) is the set of nonnegative real numbers. If the parallel channels are independent in the sense that

\[
\Pr(\mathbf{Y} | \sqrt{\mathbf{p}} \circ \mathbf{X}) = \prod_{i=1}^{N} \Pr(Y_i | \sqrt{p_i}X_i) \tag{2.2}
\]

then the independence bound for mutual information yields that

\[
I(\sqrt{\mathbf{p}} \circ \mathbf{X}; \mathbf{s} \circ \mathbf{Y}) \leq \sum_{i=1}^{N} I(\sqrt{p_i}X_i; s_iY_i) = \sum_{i=1}^{N} s_i \cdot I(\sqrt{p_i}X_i; Y_i)
\]

where the last equality follows from \(s_i \) being either 1 or 0. We can therefore focus on the optimal power allocation for independent input distributions, if the channel transition probability satisfies (2.2).

We next denote for convenience \(f_i(p) \triangleq I(\sqrt{p}X_i; Y_i) \) for \(1 \leq i \leq N \), and make the following assumption on these mutual information functions.

Assumption 1. For \(1 \leq i \leq N \), \(f_i(p) \) is continuous and strictly increasing for \(p \geq 0 \), and its first derivative, i.e.,

\[
f_i'(p) \triangleq \frac{\partial f_i(p)}{\partial p}
\]

exists and is continuous and strictly decreasing in \(p \geq 0 \), where we define \(f_i'(0) \triangleq \lim_{p \downarrow 0} f_i'(p) \).\(^3\)

\(^3\)Since the mutual information function \(f_i(p) \) is only defined for \(p \geq 0 \), its derivative at the origin cannot be defined under the usual mathematical principle, i.e., the derivative from the right equal to the derivative from the left. From the aspect of the optimization problem concerned in this work, we adopt \(f_i'(0) \) as the “derivative” at the origin, specifically when zero power is considered to be allocated to channel \(i \). See, for example, (4.15).
Generally speaking, the channels considered in Assumption 1 are supposed to have more available mutual information when more power is allocated, but the rate of increment is decreasing with respect to the power allotment. There are quite a few practical channels satisfying this assumption, such as antipodal binary-input AWGN channels with hard decision at receiver side, quaternary-input additive Laplace noise channels (cf. Example 1), scalar AWGN channels with arbitrary inputs [18], parallel AWGN channels with given independent inputs [18], and Gaussian fading channels with given inputs [19]. We will adopt Assumption 1 as a premise throughout the entire paper.

Under this assumption, it is clear that $f_i(p)$ is a strictly concave function of p with initial value $f_i(0) = I(0; Y_i) = 0$. Together with the fact that $f_i(p) \geq 0$ for $p \in \mathbb{R}_+$, we can replace the two inequality constraints in (2.1) by their equality counterparts as

$$\max \left\{ p \in \mathbb{R}_+^N : \sum_{i=1}^N p_i \leq P \right\} \min \left\{ s \in \{0,1\}^N : \sum_{i=1}^N s_i \geq K \right\} \sum_{i=1}^N s_i \cdot f_i(p_i)$$ \hspace{1cm} (2.3)

$$= \max \left\{ p \in \mathbb{R}_+^N : \sum_{i=1}^N p_i = P \right\} \min \left\{ s \in \{0,1\}^N : \sum_{i=1}^N s_i = K \right\} \sum_{i=1}^N s_i \cdot f_i(p_i)$$ \hspace{1cm} (2.4)

for a given X that validates Assumption 1. In the next chapter, we will show that under Assumption 1, the maximization-minimization problem in (2.4) becomes algorithmically tractable.
Chapter 3

Analysis of the Optimal Power Allocation

This chapter presents the analysis for the optimization problem in (2.4). For $K = 1$, (2.4) can be simplified to

$$\max_{\{p \in \mathbb{R}_{+}^N, \sum_{i=1}^{N} p_i = p\}} \min\{f_1(p_1), f_2(p_2), \ldots, f_N(p_N)\}.$$

It is thus straightforward that the optimal power allocation p^* satisfies

$$f_1(p^*_1) = f_2(p^*_2) = \cdots = f_N(p^*_N).$$

For $K = N$, the maximization-minimization power allocation problem reduces to a problem that requires only one maximization computation because $s_1 = s_2 = \ldots = s_N = 1$. Therefore, one can apply the Lagrange multipliers technique and Karuch-Kuhn-Tucker (KKT) condition to find the optimal power allocation [4]. However, for $1 < K < N$, a straight technique generally does not exist for this maximization-minimization problem. Nevertheless, we can find a necessary condition for the optimal power allocation such that the labor of examining all possible $\binom{N}{K}$ combinations of s satisfying $\sum_{i=1}^{N} s_i = K$ can be reduced as indicated in the next lemma.

Lemma 1. The optimal power allocation p^* for an (N, K)-limited access channel, where
\[1 \leq K \leq N,\] satisfies
\[f_{a_1}(p_{a_1}^*) \leq f_{a_2}(p_{a_2}^*) \leq \cdots \leq f_{a_K}(p_{a_K}^*) = f_{a_{K+1}}(p_{a_{K+1}}^*) = \cdots = f_{a_N}(p_{a_N}^*)\]
for some permutation \(a_1, a_2, \ldots, a_N\) of sequence \(1, 2, \ldots, N\).

Proof. Since the lemma trivially holds when \(K = N\), we assume \(K < N\) in the below proof. For the optimal power allocation \(p^*\), let \(a_1, a_2, \ldots, a_N\) be a permutation of sequence \(1, 2, \ldots, N\) satisfying
\[f_{a_1}(p_{a_1}^*) \leq f_{a_2}(p_{a_2}^*) \leq \cdots \leq f_{a_K}(p_{a_K}^*) \leq f_{a_{K+1}}(p_{a_{K+1}}^*) \leq \cdots \leq f_{a_N}(p_{a_N}^*).\]

We then have
\[
\max \left\{ p \in \mathbb{R}_+^N : \sum_{i=1}^N p_i = P \right\} \min \{ s \in \{0, 1\}^N : \sum_{i=1}^N s_i = K \} \sum_{i=1}^N s_i \cdot f_{a_i}(p_i) = \sum_{i=1}^K f_{a_i}(p_{a_i}^*). \tag{3.1}
\]
Suppose that there were some \(j \geq K\) such that \(f_{a_j}(p_{a_j}^*) < f_{a_{j+1}}(p_{a_{j+1}}^*)\). Then, we can reduce \(p_{a_{j+1}}^*\) down to
\[f_{a_{j+1}}^{(\text{inv})} \left(f_{a_{j+1}}(p_{a_{j+1}}^*) - \delta \right)\]
where \(f_{a_{j+1}}^{(\text{inv})}\) is the inverse function\(^1\) of \(f_{a_{j+1}}\), and increase \(p_{a_1}^*, p_{a_2}^*, \ldots, p_{a_j}^*\) respectively to
\[f_{a_1}^{(\text{inv})} \left(f_{a_1}(p_{a_1}^*) + \Delta \right), \quad f_{a_2}^{(\text{inv})} \left(f_{a_2}(p_{a_2}^*) + \Delta \right), \quad \cdots, \quad f_{a_j}^{(\text{inv})} \left(f_{a_j}(p_{a_j}^*) + \Delta \right)\]
with positive \(\delta\) and \(\Delta\) satisfying
\[
\sum_{i=1}^j f_{a_i}^{(\text{inv})} \left(f_{a_i}(p_{a_i}^*) + \Delta \right) + f_{a_{j+1}}^{(\text{inv})} \left(f_{a_{j+1}}(p_{a_{j+1}}^*) - \delta \right) = \sum_{i=1}^{j+1} p_{a_i}^*
\]
and
\[0 < \Delta + \delta \leq f_{a_{j+1}}(p_{a_{j+1}}^*) - f_{a_j}(p_{a_j}^*).\]

\(^1\)In this paper, we use \(f^{(\text{inv})}\), instead of the usual \(f^{-1}\), to denote the inverse function of \(f\). This is to hopefully provide a clearer notational indication when the inverse of the first derivative \(f'\) is additionally required later, which will be denoted by \(f'^{(\text{inv})}\) in this work.
Note that the existence, continuity and strict monotonicity of $f_i^{(\text{inv})}$ for $1 \leq i \leq N$ is guaranteed by Assumption 1. The new power assignment will clearly improve (3.1) up to

$$\sum_{i=1}^{K} f_i(p_i^*) + K \Delta.$$

A contradiction to the optimality of p^* is thus obtained.

An immediate implication of Lemma 1 is that we can distinguish the optimal power allocation for an (N,K)-limited access channel into K disjoint cases. In other words, the condition

$$\max_{1 \leq i \leq \ell-1} f_{a_i}(p_{a_i}^*) < f_{a_\ell}(p_{a_\ell}^*) = \cdots = f_{a_N}(p_{a_N}^*)$$

(3.2)

is valid for exactly one value of ℓ in $\{1, 2, \ldots, K\}$. As a result, if the index set

$$\mathbb{A} \triangleq \{a_\ell, a_{\ell+1}, \ldots, a_N\}$$

in which their respective mutual information function values are equal to $\max_{1 \leq i \leq N} f_i(p_i^*)$ is identified in advance, the maximization-minimization power allocation problem is simplified to a maximization problem as

$$\max_{p \in \mathcal{P}(\mathbb{A})} \left\{ \sum_{i \notin \mathbb{A}} f_i(p_i) + (K + |\mathbb{A}| - N) \max_{1 \leq j \leq N} f_j(p_j) \right\}$$

(3.3)

where

$$\mathcal{P}(\mathbb{A}) \triangleq \left\{ p \in \mathbb{R}_+^N : \begin{array}{l} (i) \sum_{i=1}^{N} p_i = P \\ (ii) f_i(p_i) < \max_{1 \leq j \leq N} f_j(p_j) \text{ for } i \notin \mathbb{A} \\ (iii) f_i(p_i) = \max_{1 \leq j \leq N} f_j(p_j) \text{ for } i \in \mathbb{A} \end{array} \right\}.$$

(3.4)

However, the direct identification of \mathbb{A} without knowing p^* in advance is in general a challenge. The opposite, i.e., identifying \mathbb{A} after determining p^*, is more straightforward. In order to resolve the optimization problem, we propose in the following sections to first determine the best power allocation p° corresponding to a conjectured maximal-mutual-information index set, denoted by \mathbb{B}. Then we examine whether this conjecture is the
optimal one based on conditions we establish later. In case the conjectured \mathbb{B} achieves only a suboptimal power allocation, a new round of maximization computation and follow-up examination will be launched based on a newly generated \mathbb{B}. Since the established conditions will help identifying one channel that is not in \mathbb{A} at each round, the process will stop after $N - |\mathbb{A}| + 1$ iterations at which point p^* is obtained.

3.1 Determination of the best power allocation p^* corresponding to a given index set \mathbb{B}

Based on a given index set \mathbb{B}, we transform the maximization-minimization problem into

$$
\sup_{p \in \mathcal{P}(\mathbb{B})} \left\{ \sum_{i \in \mathbb{B}} f_i(p_i) + (K + |\mathbb{B}| - N) \max_{1 \leq j \leq N} f_j(p_j) \right\} \tag{3.5}
$$

where $\mathcal{P}(\mathbb{B})$ is defined the same as (3.4) except that \mathbb{A} is replaced with \mathbb{B}. Since the given \mathbb{B} may not be the optimal index set \mathbb{A}, the solution p^* of the optimization problem defined in (3.5) could be at the boundary of $\mathcal{P}(\mathbb{B})$ in the sense that

$$f_i(p^*_i) = \max_{1 \leq j \leq N} f_j(p^*_j) \quad \text{for some } i \not\in \mathbb{B}.$$

For this reason, we use supremum instead of maximum in (3.5).

We next show that the third equality constraint in $\mathcal{P}(\mathbb{B})$ can be relaxed by incorporating the aggregate mutual information function that transforms the N-dimensional power allocation problem into an equivalent $(N - |\mathbb{B}| + 1)$-dimensional one.

Definition 1. The aggregate mutual information function $F_{\mathbb{B}}$ associated with a sequence of mutual information functions $\{f_i\}_{i \in \mathbb{B}}$ is defined through its inverse function2 as follows:

$$F_{\mathbb{B}}(\text{inv}) (y) \triangleq \sum_{i \in \mathbb{B}} f_i(\text{inv}) (y) \quad \text{for } y \geq 0 \tag{3.6}$$

2For completeness, we define $f_i(\text{inv}) (y) = \infty$ for $y \geq \omega_i \triangleq \lim_{p \to \infty} f_i(p)$ and $F_{\mathbb{B}}(\text{inv}) (y) = \infty$ if one of $\{f_i(\text{inv}) (y)\}_{i \in \mathbb{B}}$ is equal to ∞. Note that the inverse function value $F_{\mathbb{B}}(p)$ of function $F_{\mathbb{B}}(\text{inv})$ is always well defined for every $p \in \mathbb{R}_+$ because each f_i is assumed to be a strictly increasing function, and $\lim_{p \to \infty} F_{\mathbb{B}}(p) = \min_{i \in \mathbb{B}} \omega_i$.

12
Figure 3.1: Graphical illustration of the aggregate mutual information function when $f_i(p) = \log(1 + p/\sigma_i^2)$ and $\sigma_i^2 = i$ for $i \in \mathbb{B} = \{1, 2, 3\}$.

provided that all the inverse functions exist (which is guaranteed by Assumption 1).

A graphical illustration of the aggregate mutual information function for $\mathbb{B} = \{1, 2, 3\}$ is given in Figure 3.1. In this figure, it is clear that

$$F_B^{(\text{inv})}(y) = f_1^{(\text{inv})}(y) + f_2^{(\text{inv})}(y) + f_3^{(\text{inv})}(y) = p_1 + p_2 + p_3.$$

As a specific example, if $f_i(p) = \log(1 + p/\sigma_i^2)$ for some $\sigma_i^2 > 0$ and $1 \leq i \leq 3$, then

$$F_B(p) = \log\left(1 + \frac{p}{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}\right).$$

In terms of the aggregate mutual information function, we can simplify the constraints in $\mathcal{P}(\mathbb{B})$ in the following lemma, for which the proof is deferred to Appendix A.

Lemma 2. Fix an index set \mathbb{B}. The vector p° that achieves (3.5) satisfies

$$p_i^\circ = \begin{cases} q_i^\circ & \text{for } i \notin \mathbb{B} \\ f_i^{(\text{inv})}(F_B(q_B)) & \text{for } i \in \mathbb{B} \end{cases} \quad (3.7)$$
where the \((N - |\mathcal{B}| + 1)\)-dimensional vector \(q^*\) achieves:

\[
\sup_{q \in Q(\mathcal{B})} \left\{ \sum_{i \not\in \mathcal{B}} f_i(q_i) + (K + |\mathcal{B}| - N)F_\mathcal{B}(q_B) \right\}
\]

(3.8)

where

\[
Q(\mathcal{B}) \triangleq \left\{ q = (\text{list of } q_i \forall i \not\in \mathcal{B}, \ q_B) \in \mathbb{R}^{N-|\mathcal{B}|+1}_+ : \begin{array}{l}
(i) \sum_{i \in \mathcal{B}} q_i + q_B = P \\
(ii) f_i(q_i) < F_\mathcal{B}(q_B) \text{ for } i \not\in \mathcal{B}
\end{array} \right\}.
\]

In addition, \(q^* \in Q(\mathcal{B})\) if, and only if, \(p^* \in \mathcal{P}(\mathcal{B})\).

By reducing the number of constraints down to two in \(Q(\mathcal{B})\) in Lemma 2, we can further proceed to show that the inequality constraint in \(Q(\mathcal{B})\) is redundant in case \(q^* \in Q(\mathcal{B})\), as summarized in Theorem 1, for which the proof can be found in Appendix A.

Theorem 1. Given that \(q^* \in Q(\mathcal{B})\), the maximizer \(q^*\) for (3.8) is equal to the maximizer \(\tilde{q}\) of the problem below:

\[
\max_{q \in \tilde{Q}(\mathcal{B})} \left\{ \sum_{i \not\in \mathcal{B}} f_i(q_i) + (K + |\mathcal{B}| - N)F_\mathcal{B}(q_B) \right\}
\]

(3.9)

where

\[
\tilde{Q}(\mathcal{B}) \triangleq \left\{ q \in \mathbb{R}^{N-|\mathcal{B}|+1}_+ : \sum_{i \not\in \mathcal{B}} q_i + q_B = P \right\}.
\]

We summarize the notations we have used thus far as follows. The best power allocations for (3.8) and (3.9) with respect to a given \(\mathcal{B}\) are denoted by \(q^* = q^*(\mathcal{B})\) and \(\tilde{q} = \tilde{q}(\mathcal{B})\), respectively. For convenience, we drop the dependence on \(\mathcal{B}\) in their notational expressions. These two power allocations may not be equal unless \(q^* \in Q(\mathcal{B})\). Once \(\mathcal{B}\) is taken to be the optimal \(\mathcal{A}\) corresponding to the optimal power allocation \(p^*\) in the sense of (3.2), \(p^*\) can be derived from \(\tilde{q}\) (equivalently, \(q^*\) since \(\mathcal{B} = \mathcal{A}\) implies \(q^* = \tilde{q}\)) through an assignment similar to (3.7). Such notational convention will be used throughout the paper. Notably, we will show in the next section that finding the optimal power allocation \(p^*\), only the determination of \(\tilde{q}\) is required since the considered \(q^*\) always belongs to \(Q(\mathcal{B})\). Hence, as
the optimal power allocation p^* is concerned, the computation of a general q° that may lie outside $Q(\mathcal{B})$ is not necessary.

We conclude this section by pointing out that the maximization computation in (3.9) is now performed over the usual single power-sum constraint, and hence can be solved by treating $(K + |\mathcal{B}| - N)F_{\mathcal{B}}(\cdot)$ as the mutual information function of an auxiliary aggregate channel. Based on the result in Theorem 1, we are ready to present the algorithmic approach that helps identifying the optimal maximal-mutual-information index set \mathcal{A} and the optimal power allocation p^*.

3.2 Determination of the Optimal Maximal-Mutual-Information Index Set \mathcal{A} and the Optimal Power Allocation p^*

For an (N, K)-limited access channel, there are possibly $\sum_{\ell=1}^{K} \binom{N}{\ell-1}$ candidate index sets for the choices of \mathcal{B} in Theorem 1, and it may be time-consuming to perform the optimization computation for (3.9) for each of them. The next theorem then shows that this time-consuming maximization labor can be reduced to only $N - |\mathcal{A}| + 1$.

Theorem 2. The optimal maximal-mutual-information index set \mathcal{A} and the optimal power allocation p^* can be obtained through the following algorithmic procedure:

1. **Step 1.** Initialize $M = 1$ and $\mathcal{B}_1 = \{1, 2, \ldots, N\}$.

2. **Step 2.** Obtain the maximizer \tilde{q}_M for (3.9) by setting $\mathcal{B} = \mathcal{B}_M$, and calculate

$$\tilde{p}_M = [\tilde{p}_{M,1}, \tilde{p}_{M,2}, \ldots, \tilde{p}_{M,N}]^T$$

corresponding to the obtained \tilde{q}_M and the given \mathcal{B}_M through an assignment similar to (3.7).
Step 3. Assign $\mathbb{B}_{M+1} = \mathbb{B}_M \setminus \{j_M\}$, where j_M is an index in \mathbb{B}_M that satisfies

$$f'_{j_M}(\tilde{\mathbf{p}}_{M,j_M}) = \min_{i \in \mathbb{B}_M} f'_i(\tilde{\mathbf{p}}_{M,i}). \quad (3.10)$$

(If there are more than one index satisfying (3.10), just pick up any one of them as j_M.)

Step 4. If

$$(K - M) F'_{\mathbb{B}_{M+1}} \left(\sum_{i \in \mathbb{B}_{M+1}} \tilde{\mathbf{p}}_{M,i} \right) \leq f'_{j_M}(\tilde{\mathbf{p}}_{M,j_M}) \quad (3.11)$$

then set $\mathbb{A} = \mathbb{B}_M$ and $\mathbf{p}^* = \tilde{\mathbf{p}}_M$ and stop the algorithm; otherwise, set $M = M + 1$ and go to Step 2.

Proof. For better readability, we defer the detail of the proof to Appendix B and sketch only the key ideas here.

Following Lemma 2 and Theorem 1, we know that once \mathbb{B} in (3.9) is taken to be \mathbb{A}, \mathbf{p}^* can be derived from \mathbf{q} through a similar assignment to (3.7). Hence, to confirm the proposed algorithm, it suffices to prove that when stop criterion (3.11) is first valid, the corresponding \mathbb{B}_M is indeed equal to \mathbb{A}. The proof then requires the verification of the below two claims:

(a) If $|\mathbb{A}| < N$, then stop criterion (3.11) is violated and $\mathbb{A} \subseteq \mathbb{B}_{M+1}$ for $1 \leq M \leq N - |\mathbb{A}|$.

(b) If stop criterion (3.11) is violated for $1 \leq M \leq m$, then $m \leq N - |\mathbb{A}|$.

An immediate consequence of (b) is that if $|\mathbb{A}| = N$, then stop criterion (3.11) must be valid at $M = 1$ (because if stop criterion (3.11) is violated at $M = 1$, we would obtain $|\mathbb{A}| \leq N - 1$ from (b), a contradiction to $|\mathbb{A}| = N$). Hence, $\mathbb{A} = \mathbb{B}_1$ is obtained by the proposed algorithm. So, the proposed algorithm functions correctly when $|\mathbb{A}| = N$.

When $|\mathbb{A}| < N$, according to (a), we have

$$\mathbb{A} \subseteq \mathbb{B}_{N-|\mathbb{A}|+1} \subseteq \mathbb{B}_{N-|\mathbb{A}|} \subseteq \mathbb{B}_{N-|\mathbb{A}|-1} \subseteq \ldots \subseteq \mathbb{B}_2$$
and stop criterion (3.11) is violated for every $1 \leq M \leq N - |A|$. Together with the statement of (b), we obtain that stop criterion (3.11) must hold at $M = N - |A| + 1$; otherwise, a contradiction as $m = N - |A| + 1 \leq N - |A|$ will be obtained from (b). Finally, we note that $A \subseteq B_{N-|A|+1}$ and $|A| = |B_{N-|A|+1}|$ jointly imply $A = B_{N-|A|+1}$. Thus, the proposed algorithm also functions correctly when $|A| < N$. The proof of Theorem 2 is therefore completed. \[\square\]

We would like to point out that the algorithm in Theorem 2 will stop when (and usually before) M reaches K, because (3.11) trivially holds when $M = K$. This coincides with the definition of A in (3.2) that at most $K - 1$ indices are outside A. Our algorithm thus requires to solve at most K optimization problems in the form of (3.9).

We note that in general, there are $\sum_{\ell=1}^{K} \binom{N}{\ell - 1}$ choices of B and only one of them is A, and a straightforward method is to examine all of them. In comparison with our algorithm, the computation complexity of such a brute force method will be much higher when N and K are only moderately large. For example, consider an OFDM system, where there are 64 sub-carriers ($N = 64$) and at least 30 sub-carriers are required to be accessible ($K = 30$). The brute force method requires to examine $\sum_{\ell=1}^{K} \binom{N}{\ell - 1} \approx 4.9097 \times 10^{18}$ maximizations in the form of (3.9), and yet, our algorithm only needs to consider at most $30(= K)$ maximizations of the same form. Hence, the complexity reduction by the proposed algorithm is significant in this regard.

Theorem 2 indicates that given the first derivative of the marginal mutual information function $f_i(p) = I(\sqrt{p}X_i; Y_i)$ being positive, strictly decreasing and continuous in p for every $1 \leq i \leq N$ (i.e., Assumption 1), we can determine the optimal power allocation p^* for a spatially independent (N, K)-limited access channel with input $\sqrt{p} \circ X$ by performing $N - |A| + 1$ maximizations in the sense of (3.9). In the next chapter, we will show that this maximization labor can be further reduced to one if the considered channels are corrupted by additive noises of the same family. Moreover, the resultant optimal power allocation can
be graphically interpreted by a *two-phase water-filling scheme*.
Chapter 4

Optimal Power Allocation over Additive Noise Channels

By additive noises of the same family, we mean that the relationship between channel inputs and outputs can be characterized by

\[Y_i = \sqrt{p_i}X_i + \sigma_i Z_i \quad \text{for } 1 \leq i \leq N \]

(4.1)

where \(\{X_i\}_{i=1}^N \) and \(\{Z_i\}_{i=1}^N \) are both i.i.d. complex random variables with unit second moments, and they are independent from each other. We then restrict our attention only to the case that \(Z_i \) is a continuous random variable\(^1\) because Assumption 1 may fail when both \(X_i \) and \(Z_i \) are discrete. Notably, \(X_i \) often takes values in a finite alphabet (e.g., \(\{\pm 1\} \)) in practice. Specifically, when the intersection of two sets \(\{\sqrt{p_i}x + \sigma_i z : P_{Z_i}(z) > 0\} \) and \(\{\sqrt{p_i}\tilde{x} + \sigma_i z : P_{Z_i}(z) > 0\} \) is empty for every \(x \neq \tilde{x} \) with \(P_{X_i}(x) > 0 \) and \(P_{X_i}(\tilde{x}) > 0 \), we have

\[f_i(p_i) = I(\sqrt{p_i}X_i; Y_i) = H(\sqrt{p_i}X_i) = H(X_i) \]

where \(H(X_i) \) is the entropy of the channel input \(X_i \) [8]. This implies that in a discrete system, \(f_i(p_i) \) can be equal to its maximum value \(H(X_i) \) almost everywhere in \(p_i \), in which case Assumption 1 is unquestionably violated.

\(^1\)By a continuous random variable, we mean that its support can not be made finite or countable.
Observe that for continuous additive noises,
\[
I(\sqrt{p_i}X_i; Y_i) = h(Y_i) - h(Y_i|\sqrt{p_i}X_i) \\
= h(Y_i) - h(\sqrt{p_i}X_i + \sigma_i Z_i|\sqrt{p_i}X_i) \\
= h(\sigma_i \tilde{Y}_i) - h(\sigma_i Z_i) \\
= h(\tilde{Y}_i) - h(\tilde{Z}_i) \\
= I\left(\frac{\sqrt{p_i}}{\sigma_i} X_i; \tilde{Y}_i\right)
\]
(4.2)

where \(h(\cdot)\) is the differential entropy function \([8]\), and (4.2) follows from the independence between \(X_i\) and \(Z_i\), and \(\tilde{Y}_i \triangleq (\sqrt{p_i}/\sigma_i)X_i + Z_i\). This immediately yields
\[
f_i(p_i) = g\left(\frac{p_i}{\sigma_i^2}\right) \quad \text{for every } 1 \leq i \leq N \quad (4.3)
\]
with
\[
g(\rho) \triangleq I(\sqrt{\rho}X_i; \sqrt{\rho}X_i + Z_i). \quad (4.4)
\]

Assumption 1 thus reduces to the single condition that function \(g\) is continuous and strictly increasing, and its first derivative exists and is continuous and strictly decreasing.

Based on this system setting, we show in the next theorem that the optimal power allocation \(p^*\) follows a two-phase water-filling scheme. Specifically, in the first phase (which we refer to as the noise-power re-distribution phase), the least \(N - K\) noise powers among \(\{\sigma_i^2\}_{i=1}^N\) will be first poured as noise water into a tank consisting of \(K\) interconnected vessels with solid base heights equal to the remaining \(K\) noise powers and with widths of unit length as shown in Figure 4.1(b). Afterwards those \(W\) vessels either with water inside or with solid base height equal to the water surface level will be subdivided into \(N - K + W\) vessels of rectangular shape with the same heights (as the water surface level) and with widths in proportion to their noise powers (but the total volume remaining unchanged). As such, a tank with \(N\) vessels of proper heights and widths (corresponding to \(N\) channels) is ready for the second phase as exemplified in Figure 4.1(c). It is worth mentioning that after the first phase, the optimal maximal-mutual-information index set \(A\) has already been identified and...
consists of the channel indices corresponding to the aforementioned W vessels and the least $N - K$ noise powers (hence, $|A| = W + N - K$).

In the second phase (which we refer to as the \textit{signal-power allocation phase}), the heights of vessel bases will be first either lifted or possibly lowered according to total signal power P and function g as well as their current heights as shown in Figure 4.1(e). What follows, as exemplified in Figure 4.1(f), is the usual water-filling power allocation scheme. The pre-adjustment of base heights before water filling can be viewed as preparation for these vessels to be “capable” of supporting the water that is going to be poured in with amount P. As a result, the volume of water ended up in each vessel is exactly the power that should be allocated. Notably, for the special case that the noises $\{Z_i\}_{i=1}^N$ are complex Gaussian distributed, the heights of vessel bases can never be lowered in the pre-adjustment step; hence, a \textit{mercury-filling} scheme before water pouring has been proposed to materialize the lifting of heights of vessel bases [18]. However, since the adjustment of heights of vessel bases generally can be in both up and down directions, the use of the name \textit{mercury/water filling} may induce that the vessel bases should be lifted under general non-Gaussian additive noises; hence, we simply use the conventional name of water-filling in this work.

\textbf{Theorem 3.} Suppose that the information transmitted over an (N, K)-limited access channel is corrupted by additive noises of the same family characterized by (4.1), and the mutual information function $g(\rho)$ defined in (4.4) satisfies Assumption 1. Assume without loss of generality that

$$
\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_N^2.
$$

Then, the optimal maximal-mutual-information index set A is given by

$$
A = \{\ell, \ell + 1, \cdots, N\} \tag{4.5}
$$

where

$$
\ell \triangleq \min \left\{ i \in \{1, 2, \cdots, K\} \left| \begin{array}{l}
\sigma_i^2 \leq 2 \tilde{c}_K^2 \text{ for every } 1 \leq i \leq K
\end{array} \right. \right\} \tag{4.6}
$$
and \(\tilde{\sigma}_i^2 \triangleq \sigma_i^2 + [\lambda - \sigma_i^2]^+ \) for \(1 \leq i \leq K \) with \(\lambda \) chosen to satisfy \(\sum_{i=1}^{K} [\lambda - \sigma_i^2]^+ = \sum_{i=K+1}^{N} \sigma_i^2 \), and \([y]^+ \triangleq \max\{0, y\} \). The optimal power allocation \(\mathbf{p}^* \) can therefore be obtained from \(\mathbf{q}^* \) through an assignment similar to (3.7), where \(\mathbf{q}^* \) is the maximizer for (3.9) with \(\mathcal{B} \) equal to the above \(\mathcal{A} \). In other words,

\[
p_i^* = \begin{cases}
q_i^* & \text{for } 1 \leq i < \ell \\
\frac{\sigma_i^2}{\sum_{j=\ell}^{N} \sigma_j^2} \cdot q_A^* & \text{for } \ell \leq i \leq N
\end{cases}
\]

with\(^2\)

\[
q_i^* = \begin{cases}
\sigma_i^2 \cdot g^{(\text{inv})}\left(\nu \sigma_i^2\right) & \text{if } g'(\infty) < \nu \sigma_i^2 < g'(0) \\
0 & \text{if } \nu \sigma_i^2 \geq g'(0)
\end{cases}
\]

for \(1 \leq i < \ell \)

and

\[
q_A^* = \left(\sum_{j=\ell}^{N} \sigma_j^2 \right) \cdot g^{(\text{inv})}\left(\nu \frac{\sum_{j=\ell}^{N} \sigma_j^2}{K - \ell + 1} \right)
\]

where \(g^{(\text{inv})} \) is the inverse function of the first derivative \(g' \) of function \(g \), and \(\nu \) is chosen such that

\[
\sum_{i=1}^{\ell-1} q_i^* + q_A^* = P.
\]

Proof. In terms of (4.3), the determination of \(j_M \) in (3.10) can be simplified to

\[
j_M = \arg \min_{i \in \mathcal{B}_M} f_i'(\tilde{p}_{M,i})
\]

\[
= \arg \min_{i \in \mathcal{B}_M} \frac{1}{\sigma_i^2} \cdot g'\left(\frac{\tilde{p}_{M,i}}{\sigma_i^2} \right)
\]

\[
= \arg \min_{i \in \mathcal{B}_M} \frac{1}{\sigma_i^2} \cdot g'\left(g^{(\text{inv})}(F_{BM}(\tilde{q}_{BM})) \right)
\]

\[
= \arg \max_{i \in \mathcal{B}_M} \sigma_i^2
\]

where (4.11) follows from

\[
\tilde{p}_{M,i} = f_i^{(\text{inv})}(F_{BM}(\tilde{q}_{BM})) = \sigma_i^2 \cdot g^{(\text{inv})}(F_{BM}(\tilde{q}_{BM})) \quad \text{for } i \in \mathcal{B}_M
\]

\(^2\)For notational convenience, we define \(g'\infty) \triangleq \lim_{\rho \uparrow \infty} g'(\rho) \) and note that \(g'(\infty) = 0 \) for most channels of practical interest such as channels with finite input alphabet. In the specific situation where \(g'(\infty) > 0 \), we point out that it is still unnecessary to consider the case of \(\nu \sigma_i^2 \leq g'(\infty) \) in (4.8) because the KKT condition requires \(1/\sigma_i^2 \cdot g'(q_i^*/\sigma_i^2) \leq \nu \); thus by the strict decreasingness of \(g' \), we have that \(\nu \sigma_i^2 \geq g'(q_i^*/\sigma_i^2) \geq g(P/\sigma_i^2) > g'(\infty) \) is always valid for finite total power \(P \).
and (4.12) holds because $g'(g^{\text{inv}}(F_{\mathcal{B}_M}(\tilde{q}_{\mathcal{B}_M})))$ is finite due to $\tilde{q}_{\mathcal{B}_M} > 0$ for $1 \leq M \leq N - |\mathcal{A}| + 1$ (cf. (B.4c) and $\tilde{q}_{\mathcal{A}_1} = P$).

Condition (4.12) then gives that for $M = 1, 2, 3, \ldots$,

$$\mathcal{B}_M = \{M, M + 1, \ldots, N\}. \quad (4.13)$$

Using (4.3) again simplifies stop criterion (3.11) to

$$(K - M)\sigma_M^2 \leq \sum_{i=M+1}^{N} \sigma_i^2 \quad (4.14)$$

because

$$\frac{(K - M)}{f^{\prime}_{M}(\tilde{p}_{M,M})} = \frac{(K - M)\sigma_M^2}{g'(g^{\text{inv}}(F_{\mathcal{B}_M}(\tilde{q}_{\mathcal{B}_M})))}$$

and

$$\frac{1}{F^{\prime}_{M+1}(\sum_{i \in \mathcal{B}_{M+1}} \tilde{p}_{M,i})} = \sum_{i \in \mathcal{B}_{M+1}} \frac{1}{f^{\prime}_{i}(\tilde{p}_{M,i})} = \sum_{i \in \mathcal{B}_{M+1}} \frac{\sigma_i^2}{g'(g^{\text{inv}}(F_{\mathcal{B}_M}(\tilde{q}_{\mathcal{B}_M}))))}.$$

Then by definition of ℓ and the observation that the noise water level $\lambda = \tilde{\sigma}_{K}^2$, we have

$$\sigma_k^2 > \tilde{\sigma}_{K}^2 = \frac{1}{K - \ell + 1} \sum_{j=\ell}^{N} \sigma_j^2 \quad \text{for } 1 \leq k < \ell$$

which implies that in the above range of k,

$$(K - k)\sigma_k^2 \geq (K - \ell + 1)\sigma_k^2 + \sum_{j=\ell+1}^{\ell-1} \sigma_j^2 > \sum_{j=\ell}^{N} \sigma_j^2 + \sum_{j=\ell+1}^{\ell-1} \sigma_j^2 = \sum_{j=\ell+1}^{N} \sigma_j^2.$$

Accordingly, (4.14) (equivalently, (3.11)) is violated for $1 \leq M < \ell$. In addition, it can be verified that

$$\sigma_\ell^2 \leq \tilde{\sigma}_{K}^2 = \frac{1}{K - \ell + 1} \sum_{j=\ell}^{N} \sigma_j^2 = \frac{1}{K - \ell + 1} \sigma_\ell^2 + \frac{1}{K - \ell + 1} \sum_{j=\ell+1}^{N} \sigma_j^2$$

is exactly equivalent to the validity of (4.14) at $M = \ell$. Following the algorithm in Theorem 2, we can conclude from (4.13) that $\mathcal{A} = \{\ell, \ell + 1, \ldots, N\}$.

23
The optimal power allocation q^* as well as its transformation to p^* follows the usual optimization process for (3.9) by setting $B = A$. Specifically, we can reduce (3.9) to

$$
\max_{q \in \mathbb{R}^\ell} \left\{ \sum_{i=1}^{\ell-1} f_i(q_i) + (K - \ell + 1) F_A(q_A) \right\}
$$

where in the above derivation, we apply $F_A(p) = g\left(\frac{p}{\sum_{i=1}^N \sigma_i^2} \right)$, and ν is the Lagrange multiplier. Then, the Lagrange multipliers technique and KKT condition give that for $1 \leq i < \ell$,

$$
\begin{align*}
\frac{1}{\sigma_i^2} g'(\frac{q_i^*}{\sigma_i^2}) - \nu &= 0 \quad \text{if} \ q_i^* > 0 \\
\frac{1}{\sigma_i^2} g'(0) - \nu &\leq 0 \quad \text{if} \ q_i^* = 0
\end{align*}
$$

and

$$
\frac{K - \ell + 1}{\sum_{j=\ell}^N \sigma_j^2} g'(\frac{q_A^*}{\sum_{i=\ell}^N \sigma_i^2}) - \nu = 0 \quad \text{as} \ q_A^* = \tilde{q}_{B_{|A|-1}} > 0 \quad \text{(see (B.4c))}
$$

where ν is chosen to satisfy (4.10). The validity of (4.8) and (4.9) are therefore confirmed. The transformation from q^* to p^* can be derived as:

$$
p_i^* = \begin{cases}
q_i^* & \text{for } i \not\in A \\
\frac{f_i^{(inv)}(F_A(q_A^*))}{\sigma_i^2} & \text{for } i \in A
\end{cases}
$$

Several remarks can be made based on Theorem 3.

- First, it can be extended from Theorem 3 that as long as A is pre-determined, the maximization labor can always be reduced down to one. In the special case that the
Figure 4.1: The graphical interpretation of the optimal two-phase water-filling power allocation for an (8, 5)-limited access channel with independent additive noises characterized by (4.1). In this figure, $[\sigma_1^2, \sigma_2^2, \ldots, \sigma_8^2] = [8, 7, 4, 3, 3, 2, 2, 1]$. Subfigures (a), (b) and (c) correspond to the noise-power re-distribution phase, while subfigures (d), (e) and (f) illustrate the signal-power allocation phase.

noises are additive and originated from the same family (as considered in this chapter), we can directly determine \mathfrak{A} in terms of (4.6).

- Secondly, when $\ell = 1$ (equivalently, $\mathfrak{A} = \{1, 2, \ldots, N\}$), p^* can be determined without any maximization labor since we immediately have $q^*_\mathfrak{A} = P$ by (4.10). In such a case, the optimal power allocation follows the equal signal-to-noise ratio (SNR) principle as

$$
\frac{p_i^*}{\sigma_i^2} = \frac{P}{\sum_{j=1}^{N} \sigma_j^2} \quad \text{for every} \ 1 \leq i \leq N.
$$

25
Finally, the validity of Theorem 3 does not need to be restricted to channels with additive noises of the same family but can be extended to any \((N,K)\)-limited access channel with marginal mutual information functions satisfying (4.3) for some function \(g\) that obeys Assumption 1. A straightforward example is the flat fading channels with known channel states at the receiver end, characterized by

\[
Y_i = (\beta_i H_i)(\sqrt{p_i}X_i) + \sigma_i Z_i \quad \text{for } 1 \leq i \leq N
\]

(4.16)

where \(\{H_i\}_{i=1}^N\) is i.i.d. with unit second moment, and is independent of the channel input and additive noise. We then obtain \(f_i(p_i) = g(\beta_i^2 p_i/\sigma_i^2)\) with \(g(\rho) = I(\sqrt{\rho}X_i; \sqrt{\rho}H_iX_i + Z_i|H_i)\). Theorem 3 thus can be used to establish the optimal power allocation by treating \(\sigma_i^2/\beta_i^2\) as the new noise power level.

An exemplified illustration of the two-phase water-filling scheme is depicted in Figure 4.1. Details are given below.

\(\langle\text{The noise-power re-distribution phase}\rangle\)

\textbf{Fig. 4.1(a)} Set \(K\) vessels with widths of unit length and with base height of the \(i\)th vessel being \(\sigma_i^2\) for \(1 \leq i \leq K\). (Note that we assume \(\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_N^2\).)

\textbf{Fig. 4.1(b)} Pour in the “noise water” of amount \(\sum_{j=K+1}^{N} \sigma_j^2\) and set \(\tilde{\sigma}_i^2\) as the new water level of vessel \(i\) for \(1 \leq i \leq K\). Let \(\ell\) be the smallest integer among \(\{1,2,\ldots,K\}\) such that \(\sigma_{\ell}^2 \leq \tilde{\sigma}_K^2\) (cf. (4.6)). Assign \(A = \{\ell, \ell+1, \ldots, N\}\) and \(W = K - \ell + 1\).

\textbf{Fig. 4.1(c)} Sub-divide the space of the last \(W\) vessels (i.e., \(K-W+1, K-W+2, \ldots, K\)) into \(W + (N-K)\) new vessels of rectangular shape with base height the same as the water surface level and widths in proportion to \(\sigma_i^2\) for \(\ell \leq i \leq N\).

\(\langle\text{The signal-power allocation phase}\rangle\)
Fig. 4.1(d) Retain the N vessels from the previous phase.

Fig. 4.1(e) Adjust the base height of the ith vessel to\(^3\)

$$L_i(\nu) = \begin{cases} \sigma_i^2 \cdot G(\nu \sigma_i^2) & \text{for } 1 \leq i < \ell \\ \tilde{\sigma}_K^2 \cdot G(\nu \tilde{\sigma}_K^2) & \text{for } \ell \leq i \leq N \end{cases} \quad (4.17)$$

where ν is the parameter chosen in Theorem 3 according to (4.10), and

$$G(\zeta) \triangleq \begin{cases} \frac{1}{\zeta} - g'^{(\text{inv})}(\zeta) & \text{if } g'(\infty) < \zeta < g'(0) \\ \frac{1}{g'(0)} & \text{if } \zeta \geq g'(0). \end{cases}$$

Fig. 4.1(f) Pour in the “signal water” of amount P. Then the volume of water in the ith vessel is the optimal power p_i^* to be allocated for channel i.

In the above procedure, the auxiliary function G will be reduced to what has been defined and identically denoted in [18, eq. (43)] for the mercury adjustment when $\{Z_i\}_{i=1}^N$ are i.i.d. complex Gaussian with unit variance. It can also be confirmed that for additive complex Gaussian noises and $K = N$, the induced mercury adjustment in [18] is exactly equal to that given by (4.17) by replacing the constant η therein with ν. Furthermore, when channel inputs $\{X_i\}_{i=1}^N$ are also independent and complex Gaussian distributed, the adjusted base heights in (4.17) are further reduced to the original noise variances, and the standard water-filling interpretation is resulted. We however found that the adjusted base heights may not be always greater than or equal to the original heights (as they should be for additive Gaussian noises). Thus, the intuition suggested by mercury-filling may not be applicable.

\(^3\)Since $1/\nu$ is the water level, (4.7) indicates that the base heights for unit-width vessels with indices $1 \leq i < \ell$ should be given by

$$L_i(\nu) = \begin{cases} \frac{1}{\nu} - p_i^* \left(< \frac{1}{\nu} \right) & \text{if } p_i^* > 0 \\ \frac{1}{\nu(\text{inv})} \left(\geq \frac{1}{\nu} \right) & \text{if } p_i^* = 0 \end{cases} = \begin{cases} \sigma_i^2 \left(\frac{1}{\nu \sigma_i^2} - g'^{(\text{inv})}(\nu \sigma_i^2) \right) & \text{if } g'(\infty) < \nu \sigma_i^2 < g'(0) \\ \frac{1}{g'(0)} & \text{if } \nu \sigma_i^2 \geq g'(0). \end{cases}$$

A similar derivation can be made for vessels with indices $\ell \leq i \leq N$. We re-express the adjusted base heights in terms of an auxiliary function G in order to have a compatible formula to that in [18] when complex Gaussian additive noises are considered.
when the heights of vessel bases need to be lowered. We next give examples for both \(K = N\) and \(K < N\) to substantiate this finding.

Example 1 (Quaternary-input additive Laplace noise channels). Suppose that the i.i.d. channel inputs \(\{X_i\}_{i=1}^{N}\) in (4.1) admit only four values with

\[
\Pr \left[X_i = \frac{1 + j}{\sqrt{2}} \right] = \Pr \left[X_i = \frac{1 - j}{\sqrt{2}} \right] = \Pr \left[X_i = \frac{-1 + j}{\sqrt{2}} \right] = \Pr \left[X_i = \frac{-1 - j}{\sqrt{2}} \right] = \frac{1}{4}
\]

and the complex zero-mean unit-variance i.i.d. additive noises \(\{Z_i\}_{i=1}^{N}\) have marginal Laplace probability density function \(\exp(-2(|\Re(z)| + |\Im(z)|))\) for complex \(z\), where \(\Re(z)\) and \(\Im(z)\) are the real and imaginary parts of \(z\), respectively. The additive Laplace noise has been considered in many publications such as [2,13,16,28–30,35], and has been shown to be an appropriate model for, e.g., polarity detection [13], prediction error of image encoding [35] and communications at extremely low frequencies [2].

Assume \(N = K = 4\), \(P = 1.5\), and \([\sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2] = [1.2, 1.0, 0.4, 0.1]\). We can then derive as similarly to [12] that

\[
g'(\rho) = \sqrt{\frac{2}{\rho}} \cdot \exp(-\sqrt{2}\rho) \cdot \text{Gd} \left(\sqrt{2}\rho \right) \quad \text{for} \ \rho > 0
\]

and

\[
g'(0) \triangleq \lim_{\rho \downarrow 0} g'(\rho) = 2
\]

where \(\text{Gd}(x) \triangleq 2 \cdot \arctan(e^x) - \pi/2\) is the Gudermannian function [6]. It can then be confirmed from Figure 4.2 that \(g'\) satisfies Assumption 1.

Since \(N = K = 4\), we get \(\tilde{\sigma}_i^2 = \sigma_i^2\) for \(1 \leq i \leq 4\); hence, \(\ell = 4\) and \(A = \{4\}\). We can then obtain numerically that

\[
L_i(\nu) = \begin{cases}
1.00955 & \text{for } i = 1 \quad (\tilde{\sigma}_1^2 = 1.2; \ i.e., \ lowered) \\
0.94231 & \text{for } i = 2 \quad (\tilde{\sigma}_2^2 = 1.0; \ i.e., \ lowered) \\
0.80963 & \text{for } i = 3 \quad (\tilde{\sigma}_3^2 = 0.4; \ i.e., \ lifted) \\
0.95399 & \text{for } i = 4 \quad (\tilde{\sigma}_4^2 = 0.1; \ i.e., \ lifted)
\end{cases}
\]
where $\nu = 0.76695$ according to (4.10). Therefore, the base heights of the first two vessels are actually *lowered* rather than *lifted* as indicated above inside the parentheses. The optimal power allocation is given by

$$p^* = [p_1^*, p_2^*, p_3^*, p_4^*] = [0.29432, 0.36156, 0.49424, 0.34988].$$

We next illustrate a situation with $K < N$.

Example 2. Following Example 1 but now using $K = 3$ and $P = 1$, we get $[\tilde{\sigma}_1^2, \tilde{\sigma}_2^2, \tilde{\sigma}_3^2] = [1.2, 1.0, 0.5]$; hence, $\ell = 3$ and $A = \{3, 4\}$. We then obtain numerically that

$$L_i(\nu) = \begin{cases} 0.964300 & \text{for } i = 1 \quad (< \tilde{\sigma}_1^2 = 1.2; \text{i.e., lowered}) \\ 0.896885 & \text{for } i = 2 \quad (< \tilde{\sigma}_2^2 = 1.0; \text{i.e., lowered}) \\ 0.758525 & \text{for } i = 3 \quad (> \tilde{\sigma}_3^2 = 0.5; \text{i.e., lifted}) \\ 0.758525 & \text{for } i = 4 \quad (> \tilde{\sigma}_3^2 = 0.5; \text{i.e., lifted}) \end{cases}$$

where $\nu = 0.828795$ according to (4.10). Therefore, the base heights of the first two vessels are again *lowered* rather than *lifted*. Note that for vessels with indices in $A = \{3, 4\}$,
their adjusted base heights should be equal and are determined by $\hat{\sigma}_K^2$. The optimal power allocation is given by

$$p^* = [p_1^*, p_2^*, p_3^*, p_4^*] = [0.242270, 0.309685, 0.358436, 0.089609].$$

Although the two-phase water-filling scheme cannot be extended to a general (N, K)-limited access channel (for which the channels may not be controlled by a common function g with single parameter σ^2), the resultant optimal power allocation p^* can still be graphically interpreted similarly to Figure 4.1(f). In particular, we can regard the tank to be structured by $N - |A| + 1$ vessels, which have unit width except for the last one that is of width $K - N + |A|$, as illustrated in Figure 4.3. The adjusted heights of vessel bases in their most
general form can be formulated by the following equations: if $i \notin \mathcal{A}$, then
\[
L_i(\nu) \triangleq \begin{cases}
\frac{1}{\nu} - \frac{f_i''(\text{inv})}{f_i'(0)} & \text{if } f_i'(\infty) < \nu < f_i'(0) \\
\frac{1}{f_i'(0)} & \text{if } \nu \geq f_i'(0)
\end{cases} (4.18a)
\]
else (i.e., $i \in \mathcal{A}$)
\[
L_i(\nu) \triangleq \frac{1}{\nu} - \frac{1}{K-N+|\mathcal{A}|} F_{\nu}^{(\text{inv})} \left(\frac{\nu}{K-N+|\mathcal{A}|} \right). (4.19)
\]
It can be verified that taking function G into function L_i defined in (4.17) should assume the same form as (4.18a), (4.18b) and (4.19). From the above formula, it is clear that $1/\nu$ can be interpreted as the water level. Equations (4.18a) and (4.19) then reasonably imply that the optimal power allocation q^* satisfies $q^*_i = f_i''(\text{inv})/f_i'(0)$ for $i \notin \mathcal{A}$ and $q^*_\mathcal{A} = F_{\nu}^{(\text{inv})} \left(\frac{\nu}{K-N+|\mathcal{A}|} \right)$. The aggregate power $q^*_\mathcal{A}$ will then be re-distributed to those channels with indices in \mathcal{A} according to equal-mutual-information principle, i.e., $f_i(p^*_i) = F_{\nu}(q^*_\mathcal{A})$ for every $i \in \mathcal{A}$. This equal-mutual-information principle is exactly the extension of equal-SNR principle for channels with additive noises of the same family. Moreover, when ν lies in the range specified in (4.18b) for some i, no power is allocated to the respective channel; hence, $p^*_i = q^*_i = 0$.

We close this chapter by the following observation. It may be worth knowing that for channels with additive noises of the same family, the optimal power allocation p^* can actually be determined directly by regarding the last W vessels as unit-width vessels with base height respectively equal to $\tilde{\sigma}_i^2$ for $K-W+1 \leq i \leq K$ (cf. Figure 4.1(b)). This reduces the original problem to a power allocation problem over a (K,K)-limited access additive noise channel with effective noise powers $\{\tilde{\sigma}_i^2\}_{i=1}^K$. The resultant K-dimensional optimal power allocation $r^* \triangleq [r_1^*, r_2^*, \ldots, r_K^*]$, is exactly the heights of water levels in each vessel. The desired optimal
power allocation \(p^* \) can then be given by

\[
p^*_i = \begin{cases}
 r^*_i & \text{for } 1 \leq i < \ell \\
 \frac{\sigma^2_i}{\sum_{k=\ell}^N \sigma^2_k} \left(\sum_{j=\ell}^K r^*_j \right) & \text{for } \ell \leq i \leq N.
\end{cases}
\]

Although taking this aspect seems to save the effort of sub-dividing the vessels into ones with unequal widths in Figure 4.1(c), more effort can be saved if the last \(W \) vessels are aggregated as one. In other words, we can simply use a tank containing \(\ell \) vessels, in which \(\ell - 1 \) of them have unit width and the remaining one has width \(W \). We can then obtain the \(\ell \)-dimensional optimal power allocation \(q^* = [q^*_1, q^*_2, \ldots, q^*_{\ell-1}, q^*_\ell] \) through the water-filling scheme (cf. Figure 4.1(f)). The equal-SNR power allocation principle is subsequently applied to re-distribute \(q^*_h \) to \(p^*_\ell, p^*_{\ell+1}, \ldots, p^*_N \) in proportion to \(\sigma^2_\ell, \sigma^2_{\ell+1}, \ldots, \sigma^2_N \), respectively, as suggested in (4.7). This is actually what Theorem 3 implicitly indicates, which justifies the introduction of the aggregate mutual information that views the last \(W + (N - K) \) channels as a single auxiliary channel.
Chapter 5

Implications from the Optimal Power Allocation

Theorem 2 indicates that the sequence of candidate maximal-mutual-information index sets $\mathbb{B}_1, \mathbb{B}_2, \mathbb{B}_3, \ldots$ can be identified via the determination of j_1, j_2, j_3, \ldots. In a sense, this sequence can be regarded as sorting the channels in their descending degrees of "noisiness," which can be supported by the result from Theorem 3, where the sequence of j_1, j_2, j_3, \ldots coincides with $\sigma^2_{j_1} \geq \sigma^2_{j_2} \geq \sigma^2_{j_3} \geq \cdots$.

For a general (N, K)-limited access channel in which the noises are not necessarily additive or scaled from the same family, can one identify such sequence through their mutual information functions? The next theorem may provide a guide along this direction of thinking. For simplification, all the proofs in this chapter are placed in Appendix C.

Theorem 4. For a general (N, K)-limited access channel, if

$$f'_{k_1} \left(f_{k_1}^{(\text{inv})}(y)\right) \leq f'_{k_2} \left(f_{k_2}^{(\text{inv})}(y)\right) \leq \cdots \leq f'_{k_N} \left(f_{k_N}^{(\text{inv})}(y)\right) \quad \text{for all } y \geq 0$$

then $j_M = k_M$ for $M = 1, 2, 3, \ldots$.

\[1\] When $\omega_i \triangleq \lim_{p \to \infty} f_i(p)$ is finite, the function $f'_{k_1} \left(f_{k_1}^{(\text{inv})}(y)\right)$ is clearly defined for $y < \omega_i$. For $y \geq \omega_i$, we define $f_{k_1}^{(\text{inv})}(y) = \infty$ as emphasized in Footnote 2. This, together with the fact that $\omega_i < \infty$ and Assumption 1 jointly imply that $\lim_{p \to \infty} f'_{i}(p) = 0$, gives that $f'_{i} \left(f_{i}^{(\text{inv})}(y)\right) = 0$ for $y \geq \omega_i.$
Here, regardless of the original goal of the determination of optimal power allocation, Theorem 4 (as an extension from Theorem 3) proposes a way to compare the degree of “noisiness” of general channels via their mutual information functions. For the additive noise channels of the same family, we have

\[f_i' \left(f_i^{(\text{inv})}(y) \right) = \frac{1}{\sigma^2_i} g_j' \left(g_j^{(\text{inv})}(y) \right). \]

Hence, the proposed ordering coincides with the general impression that the larger the \(\sigma^2_i \), the noisier the \(i \)th channel is considered to be. To simplify the notation, we drop the parentheses between \(f_i' \) and \(f_i^{(\text{inv})} \) in the sequel.

For channels other than the one considered in Chapter 4, there could be no apparent winner between any two channels in the sense of \(\{ f_i' f_i^{(\text{inv})} \}_{i=1}^N \). In other words, it could happen that

\[f_i' f_i^{(\text{inv})}(y_1) > f_j' f_j^{(\text{inv})}(y_1) \quad \text{but} \quad f_i' f_i^{(\text{inv})}(y_2) < f_j' f_j^{(\text{inv})}(y_2) \]

for two distinct \(y_1 \) and \(y_2 \) and two distinct \(i \) and \(j \). As such, the sequence of \(j_1, j_2, j_3, \ldots \) will become a function of the total signal power \(P \). However, if a certain condition is satisfied, the pre-identification of the degrees of channel noisiness is still possible at two extreme situations: \(P \to 0 \) and \(P \to \infty \), which we will respectively refer to as the low- and high-power regimes in later discussion.

Lemma 3.

1. If

\[\limsup_{y \downarrow 0} \text{sgn} \left(f_i' f_i^{(\text{inv})}(y) - f_j' f_j^{(\text{inv})}(y) \right) \leq 0 \quad \text{for every } 1 \leq i < j \leq N \quad (5.1) \]

then \(j_i = i \) in the low-power regime, where sign function \(\text{sgn}(\rho) \) is equal to either 1, 0 or \(-1\) depending on whether \(\rho > 0 \), \(\rho = 0 \) or \(\rho < 0 \).
2. If
\[
\limsup_{y \uparrow \min\{\omega_i, \omega_j\}} \text{sgn}\left(f_i'(f_i^{-1}(y)) - f_j'(f_j^{-1}(y)) \right) \leq 0 \quad \text{for every } 1 \leq i < j \leq N \quad (5.2)
\]
then \(j_i = i\) in the high-power regime, provided that \(\lim_{p \to \infty} f_i'(p) = 0\) for \(1 \leq i \leq N\), where \(\omega_i \triangleq \lim_{p \to \infty} f_i(p)\).

Since the input alphabet is usually finite for channels of practical interest, we have \(\omega_i \triangleq \lim_{p \to \infty} f_i(p) \leq H(X) < \infty\). This immediately validates the premise, i.e., \(\lim_{p \to \infty} f_i'(p) = 0\), for condition (5.2) implying \(j_i = i\) in the high-power regime. In other words, \(\lim_{p \to \infty} f_i'(p) = 0\) is true for all finite-input channels. There however exists a certain kind of channels where \(\omega_i = \infty\) while \(\lim_{p \to \infty} f_i'(p) = 0\). An example is the Gaussian-input AWGN channel for which \(f_i(p) = \log(1 + p/\sigma_i^2)\). We would like to emphasize that the inference regarding (5.2) still remains valid for channels with unbounded mutual information as long as \(\lim_{p \to \infty} f_i'(p) = 0\).

Conditions (5.1) and (5.2) in Lemma 3 involve the examination of the limit supremum of function differences. The next corollary shows that their validity can be guaranteed by comparing the limiting behaviors of individual functions.

Corollary 1.

1. The validity of (5.1) for an \((i, j)\) pair is certain if one of the three conditions below is satisfied:\(^2\)
\[
\begin{align*}
&\begin{cases}
 \quad f_i'(0) < f_j'(0) \quad \text{(5.3a)} \\
 \quad f_i'(0) = f_j'(0) \text{ and } f_i''(0) < f_j''(0) \quad \text{(5.3b)} \\
 \quad (\exists \delta > 0) \ f_i'(p) \leq f_j'(p) \text{ for } 0 < p < \delta.
\end{cases}
\end{align*}
\]

2. The validity of (5.2) for an \((i, j)\) pair is certain if
\[
\omega_i = \lim_{p \to \infty} f_i(p) < \omega_j = \lim_{p \to \infty} f_j(p). \quad (5.4)
\]

\(^2\)The second derivative \(f_i''\) at the origin is again defined as \(f_i''(0) \triangleq \lim_{p \to 0} f_i''(p)\).
We are now ready to illustrate an example that validates the sufficient conditions in Lemma 3 and Corollary 1.

Example 3 (Flat fading channels). Consider the fading channels characterized by (4.16), where the additive noises \(\{Z_i\}_{i=1}^N \) are i.i.d. zero-mean complex Gaussian, but the channel inputs \(\{X_i\}_{i=1}^N \) are no longer identically distributed. With the first three channel inputs being respectively BPSK, QPSK and 16-QAM and the remaining channel inputs being complex Gaussian signals, we obtain \(j_i = i \) for \(i = 1, 2, \ldots \) in both low- and high-power regimes by being given

\[
\frac{\sigma_1^2}{\beta_1^2} = \frac{\sigma_2^2}{\beta_2^2} > \frac{\sigma_4^2}{\beta_4^2} > \frac{\sigma_6^2}{\beta_6^2}. \tag{5.5}
\]

This can be verified as follows.

It has been derived in [19] that

\[
f'_i(p) = E \left[\beta_i^2 |H_i|^2 \cdot \text{MMSE}_i \left(p \frac{\beta_i^2}{\sigma_i^2} |H_i|^2 \right) \right]
\]

and

\[
f'_i(0) = \lim_{p \to 0} f'_i(p) = \lim_{p \to 0} E \left[\beta_i^2 |H_i|^2 \cdot \text{MMSE}_i \left(p \frac{\beta_i^2}{\sigma_i^2} |H_i|^2 \right) \right] = E \left[\beta_i^2 |H_i|^2 \right] = \frac{\beta_i^2}{\sigma_i^2}
\]

where

\[
\text{MMSE}_i(p) = E \left[|X_i - E[X_i|\sqrt{p}X_i + Z_i]|^2 \right].
\]

In the low-power regime, the order of those indices, where \(\sigma_i^2/\beta_i^2 \) are not equal, is thus confirmed by (5.3a). From [18], we know

\[
\text{QPSK-MMSE}(\rho) = \text{BPSK-MMSE}(\rho/2) > \text{BPSK-MMSE}(\rho) \quad \text{for } \rho > 0.
\]

Then

\[
f'_1(p) - f'_2(p) = E \left[\frac{\beta_1^2}{\sigma_1^2} |H_1|^2 \text{MMSE}_1 \left(p \frac{\beta_1^2}{\sigma_1^2} |H_1|^2 \right) \right] - E \left[\frac{\beta_2^2}{\sigma_2^2} |H_2|^2 \text{MMSE}_2 \left(p \frac{\beta_2^2}{\sigma_2^2} |H_2|^2 \right) \right]
\]

\[
= \frac{\beta_1^2}{\sigma_1^2} E \left[|H_1|^2 \left(\text{BPSK-MMSE} \left(p \frac{\beta_1^2}{\sigma_1^2} |H_1|^2 \right) - \text{QPSK-MMSE} \left(p \frac{\beta_2^2}{\sigma_2^2} |H_2|^2 \right) \right) \right]
\]

\[
< 0
\]
for $p > 0$. Then (5.3c) assures that $j_1 = 1$ and $j_2 = 2$ in the low-power regime, which somehow suggests that under equal effective noise power, QPSK modulations should be favored over BPSK modulations when the power budget is extremely tight. Since $j_3 = 3$ and $j_4 = 4$ in the low-power regime can be verified similarly, we omit their proof.

In the high-power regime, we first note that $\lim_{p \to \infty} f_i'(p) = 0$ for $1 \leq i \leq 6$. We then confirm $j_i = i$ for $1 \leq i \leq 3$ from

$$\lim_{p \to \infty} f_i(p) = \begin{cases} 2^{i-1} & \text{if } i = 1, 2, 3 \\ \infty & \text{if } i > 3 \end{cases}$$

according to (5.4). That $j_i = i$ for $4 \leq i \leq 6$ in the high-power regime can be substantiated by (5.2) and $f_i f_i'_{\text{inv}}(y) = \frac{\sigma^2}{\nu^2} \cdot g' g_{\text{inv}}(y)$, where

$$g(\rho) = E[\log(1 + \rho |H|^2)] \quad \text{and} \quad g'(\rho) = E\left[\frac{|H|^2}{1 + \rho |H|^2}\right].$$

□

After determining the sequence j_1, j_2, j_3, \ldots, the next task for finding the optimal power allocation is to determine A. Recall that A is defined as the set of channels that have the largest mutual information for the optimal power assignment (see (3.2)). For channels corrupted with additive noises of the same family, A can be directly determined and has nothing to do with total power P. In more general cases, however, A depends on P. There is even no guarantee for its convergence in the low- or high-power regimes even if the monotonicity condition of $\{f_i f_i'_{\text{inv}}\}_{i=1}^N$ in Theorem 4 holds. This is because in terms of given j_1, j_2, j_3, \ldots, only sufficient conditions on the validity and violation of stop criterion (3.11) can be obtained as summarized in the next lemma.

Lemma 4. For the already pre-determined j_1, j_2, j_3, \ldots and an integer M that is under examination in the algorithm of Theorem 2, we have the following logical statements to help determining A. Again, in the high-power region, we assume that $\lim_{p \to \infty} f_i'(p) = 0$ for $1 \leq i \leq N$. 37
1. If
\[\limsup_{y \downarrow 0} \sgn \left(K - M - \sum_{i \in B_{M+1}} \frac{f'_{j_M} f^{(\text{inv})}_{j_M}(y)}{f'_{i} f^{(\text{inv})}_{i}(y)} \right) \leq 0 \] (5.7)
then stop criterion (3.11) holds in the low-power regime.

2. If
\[\liminf_{y \downarrow 0} \sgn \left(K - M - \sum_{i \in B_{M+1}} \frac{f'_{j_M} f^{(\text{inv})}_{j_M}(y)}{f'_{i} f^{(\text{inv})}_{i}(y)} \right) > 0 \] (5.8)
then stop criterion (3.11) fails in the low-power regime.

3. If
\[\limsup_{y \uparrow \Omega(B_M)} \sgn \left(K - M - \sum_{i \in B_{M+1}} \frac{f'_{j_M} f^{(\text{inv})}_{j_M}(y)}{f'_{i} f^{(\text{inv})}_{i}(y)} \right) \leq 0 \] (5.9)
then stop criterion (3.11) holds in the high-power regime, where
\[\Omega(B_M) \triangleq \min_{i \in B_M} \omega_i = \min_{i \in B_M} \lim_{p \to \infty} f_i(p) \]

4. If
\[\liminf_{y \uparrow \Omega(B_M)} \sgn \left(K - M - \sum_{i \in B_{M+1}} \frac{f'_{j_M} f^{(\text{inv})}_{j_M}(y)}{f'_{i} f^{(\text{inv})}_{i}(y)} \right) > 0 \] (5.10)
then stop criterion (3.11) fails in the high-power regime.

Although conditions (5.7) and (5.8) are mutually exclusive, it is still possible that both are violated. In such a case, \(\lim_{P \to 0} A(P) \) may be indeterminate. Likewise, the same remark is applied to (5.9) and (5.10).

The conditions in Lemma 4 involve the examination of the limiting behavior of a difference between a constant \(K - M \) and a sum of function ratios \(\sum_{i \in B_{M+1}} [f'_{j_M} f^{(\text{inv})}_{j_M}(y)/f'_{i} f^{(\text{inv})}_{i}(y)] \).
We similarly derive sufficient conditions to (5.7)–(5.10) based on the limiting behavior of individual functions as shown in Corollary 2.

Corollary 2. Follow Lemma 4.
1. (5.7) is valid if
\[K - M < \sum_{i \in \mathcal{B}_{M+1}} \frac{f'_{j_M}(0)}{f'_i(0)}. \] (5.11)

2. (5.8) is valid if
\[K - M > \sum_{i \in \mathcal{B}_{M+1}} \frac{f'_{j_M}(0)}{f'_i(0)}. \] (5.12)

3. (5.9) is valid if
\[K - M < \sum_{i \in \mathcal{B}_{M+1}} \liminf_{y \uparrow \Omega(B_M)} \frac{f'_{j_M} f_{j_M}^{(\text{inv})}(y)}{f'_i f_i^{(\text{inv})}(y)}. \] (5.13)

4. (5.10) is valid if
\[K - M > \sum_{i \in \mathcal{B}_{M+1}} \limsup_{y \uparrow \Omega(B_M)} \frac{f'_{j_M} f_{j_M}^{(\text{inv})}(y)}{f'_i f_i^{(\text{inv})}(y)}. \] (5.14)

Furthermore, if \(j_1, j_2, j_3, \ldots \) are determined according to the condition in Lemma 3, i.e., (5.2), then (5.10) can be implied by
\[\omega_{j_M} = \lim_{p \to \infty} f_{j_M}(p) < \omega_{j_{M+1}} = \lim_{p \to \infty} f_{j_{M+1}}(p). \] (5.15)

Example 4. Continue from Example 3 where we have determined \(j_i = i \) for \(i = 1, 2, \ldots \) for both low- and high-power regimes. Assume \(K = 5 \) and
\[
\begin{bmatrix}
\sigma^2_1 & \sigma^2_2 & \sigma^2_3 & \sigma^2_4 & \sigma^2_5 & \sigma^2_6 \\
\beta^2_1 & \beta^2_2 & \beta^2_3 & \beta^2_4 & \beta^2_5 & \beta^2_6
\end{bmatrix} = [1, 1, 0.5, 0.5, 0.4, 0.4].
\]

Then, by \(f'_i(0) = \beta_i^2 / \sigma_i^2 \) for \(1 \leq i \leq 6 \) and (5.11) and (5.12), we establish
\[A \ (= \lim_{P \to 0} A(P)) = B_3 = \{3, 4, 5, 6\} \]
in the low-power regime.

In the high-power regime, (5.15) and (5.6) imply that \(A \subseteq B_4 = \{4, 5, 6\} \). Examination of \(M = 4 \) with \(B_5 = \{5, 6\} \) gives
\[
\sum_{i \in B_5} \limsup_{y \uparrow \Omega(B_4)} \frac{f'_{j_i} f_{j_i}^{(\text{inv})}(y)}{f'_i f_i^{(\text{inv})}(y)} = \sum_{i \in B_5} \frac{\beta_i^2 / \sigma_i^2}{\beta_i^2 / \sigma_i^2} = 1.6 > K - M = 5 - 4 = 1.
\]
Hence, (5.13) is valid, and so is the stop criterion of the algorithm. As a result, the algorithm in Theorem 2 will stop at \(M = 4 \) and \(A(= \lim_{P \to \infty} A(P)) = \mathbb{B}_4 = \{4, 5, 6\} \). □

The two lemmas and two corollaries presented previously give the conditions under which \(A \) can be determined directly in the low- and high-power regimes. We can then compute the optimal power allocation \(q^* \) using the Lagrange multipliers technique and KKT condition in terms of the auxiliary aggregate channel associated with \(A \). After such step, the optimal power allocation \(p^*_i \) for a channel outside \(A \) equals the respective component \(q^*_i \) of \(q^* \), but the power allocation for channels inside \(A \) should be obtained by re-distributing the power \(q^*_A \) according to the equal mutual-information principle. Since we are concerned with the situation when \(P \) approaches either 0 or \(\infty \), the optimal power \(p^* \) may as well approach the same limiting value. It is thus more meaningful to consider the ratio between the optimal power allocations of channel pairs in the low- and high-power regimes.

Lemma 5. After the determination of \(A \), the optimal power allocation \(q^*_i \) for the \(i \)th channel outside \(A \) asymptotically satisfies

\[
\lim_{P \to 0} \frac{q^*_i}{q^*_A} = \begin{cases}
(K + |A| - N) \frac{F''_A(0)}{F''_i(0)} & \text{if } f_i'(0) = (K + |A| - N) F'_A(0) \\
0 & \text{otherwise}
\end{cases}
\]

(5.16)

provided the second derivatives \(f''_i(p) \) and \(F''_A(p) \) exist, \(f'_i(0) \equiv \lim_{p \to 0} f''_i(p) < \infty \), and \(F''_A(0) \equiv \lim_{p \to 0} F''_A(p) < \infty \). In addition, for two channels with indices \(i, j \) in \(A \), the redistribution of \(q^*_A \) yields

\[
\lim_{P \to 0} \frac{p^*_i}{p^*_j} = \frac{f'_j(0)}{f'_i(0)}
\]

provided that \(f'_i(0) \) and \(f'_j(0) \) are both finite.

In the high-power regime, since we assume \(\lim_{p \to \infty} f'_i(p) = 0 \), we have \(\limsup_{p \to \infty} f''_i(p) = 0 \).³ Discussion regarding the limiting power ratio between channel pair therefore cannot

³This can be seen from \(0 \geq \int_\alpha^\beta f''(p)dp \geq f'(\beta) - f'(\alpha) \) as a consequence of the strict decreasingness of \(f'_i \) [26, p. 100].
be stated in the same fashion as (5.16). The next observation then indicates that in the high-power regime, the power ratios between channel pairs are governed by the rate of convergences of \(\{ f_i'(p) \}_{i=1}^{N} \) at \(p \) large.

Observation 1.

1. For channels outside \(A \), the following statements hold.

 - If \(F^*_h \) and each \(f'_i \) outside \(A \) vanish at a polynomial speed, i.e.,
 \[
 \lim_{q_h \to \infty} q_h^{m_h} (K - N + |A|) F^*_h(q_h) = c_h \quad \text{and} \quad \lim_{q_i \to \infty} q_i^{m_i} f'_i(q_i) = c_i \quad \text{for} \quad i \notin A,
 \]
 where \(m_i, m_h, c_i \) and \(c_h \) are all positive, or if \(F^*_h \) and each \(f'_i \) outside \(A \) vanish at an exponential speed, i.e.,
 \[
 \lim_{q_h \to \infty} q_h^{m_h} \log((K - N + |A|) F^*_h(q_h)) = c_h \quad \text{and} \quad \lim_{q_i \to \infty} q_i^{m_i} \log(f'_i(q_i)) = c_i \quad \text{for} \quad i \notin A,
 \]
 where \(m_i, m_h, c_i \) and \(c_h \) are all negative, then for \(i,j \notin A \),
 \[
 \lim_{P \to \infty} q_i^* q_j^* = \begin{cases}
 0 & \text{if } |m_i| > |m_j| \\
 (\frac{\omega_i}{\omega_j})^{1/m_i} & \text{if } |m_i| = |m_j| \\
 0 & \text{if } |m_i| < |m_j|
 \end{cases}
 \]

 \[
 \lim_{P \to \infty} q_i^* q_j^* = \begin{cases}
 0 & \text{if } |m_i| > |m_h| \\
 (\frac{\omega_i}{\omega_h})^{1/m_i} & \text{if } |m_i| = |m_h| \\
 0 & \text{if } |m_i| < |m_h|
 \end{cases}
 \]

 - If for \(i,j \notin A \), \(f'_i \) vanishes exponentially fast while \(f'_j \) and \(F^*_h \) decay to zero at a polynomial speed, then
 \[
 \lim_{P \to \infty} q_i^* q_j^* = \lim_{P \to \infty} q_h^* = 0.
 \]

2. For channels \(i,j \) inside \(A \),

 \[
 \begin{cases}
 \lim_{P \to \infty} p_i^* = f_i^{(inv)}(\Omega(A)) & \text{if } \omega_i > \Omega(A) = \min_{k \in A} \omega_k \\
 \lim_{P \to \infty} p_i^* = \lim_{y \to \Omega(A)} f_j^{(inv)}(y) & \text{if } \omega_i = \omega_j = \Omega(A).
 \end{cases}
 \]
There are certain channels with polynomially vanishing first derivatives in their mutual information functions. For example, the fading channels characterized in (4.16) satisfy \(\lim_{q_i \to \infty} q_i f'_i(q_i) = 1 \) when both channel inputs and additive noises are complex Gaussian. Examples for exponentially vanishing first derivatives in their mutual information functions are the AWGN channels with a finite channel input alphabet [18], for which \(\lim_{q_i \to \infty} q_i^{-1} \log(f'_i(q_i)) = -d_i^2/(4\sigma_i^2) \), where \(d_i \) is the minimum distance between distinct channel inputs.

An interesting observation in the high-power regime is that the optimal power allocation \(p_i^* \) for a channel in \(A \) may be bounded even if the total power \(P \) goes to infinity. An available example can be constructed by re-assuming \(K = 1 \) in Example 3. Then, we have \(A = \{1, 2, \cdots, 6\} \), \(\Omega(A) = \min_{i \in A} \omega_i = 1 \) and \(\lim_{P \to \infty} p_i^* = f_i^{(\text{inv})}(\Omega(A)) = f_i^{(\text{inv})}(1) \) for \(1 \leq i \leq 6 \), in which case \(\lim_{P \to \infty} p_i^* \) is a finite positive number for \(2 \leq i \leq 6 \). It can be further verified that taking \(K = 2 \) in the same example gives \(A = \{2, 3, \cdots, 6\} \) in the high-power regime, which also results in \(0 < \lim_{P \to \infty} p_i^* < \infty \) for \(3 \leq i \leq 6 \).
Chapter 6

Concluding Remarks

In this dissertation, we consider the \((N, K)\)-limited access channel and establish an algorithmical procedure to find its optimal power allocation. The optimal power allocation obtained is not restricted to AWGN channels but can be applied to general channels with corresponding mutual information functions satisfying Assumption 1. For additive noises scaled from the same distribution family, finding the optimal power allocation is reduced to a simple two-phase water-filling process. This two-phase water-filling graphical interpretation can then be deduced to a general case, where the degrees of “channel noisiness” are in a sense implied by the composition functions \(\{f_i f_i^{(inv)}\}_{i=1}^{N}\) of the mutual information functions \(\{f_i\}_{i=1}^{N}\). General behaviors of the optimal power allocation in low- and high-power regimes are also established. We would like to point out that the results in the work can be directly applied to a resource allocation problem associated with some “profit” functions \(\{f_i\}_{i=1}^{N}\) as long as the problem is mathematically of the same form as (2.3). As such, the optimal resource allocation can be solved algorithmically, and sometimes directly if certain monotonicity conditions are satisfied. In addition, \(\{f_i f_i^{(inv)}\}_{i=1}^{N}\) now suggests the prioritized sequence of investments, i.e., the smaller the \(f_i f_i^{(inv)}\), the less profitable from the investment \(p_i\).

One possible future work is to relax the independence assumption in (2.2) since a certain degree of dependence among channels may exist in practice. A good start would be to
investigate the additive color noise compound channel modeled by

$$Y_i = \sqrt{p_i}X_i + \sigma_i Z_i \quad \text{for } 1 \leq i \leq N$$

where \(\{Z_i\}_{i=1}^N \) are dependent random variables. According to our preliminary study, a universal guideline is obtained for a group of permutation-invariant channels, in which the system mutual information remains unchanged when simultaneously permuting their power parameters and multiplicative coefficients (i.e., switching \((p_i, \sigma_i^2)\) and \((p_j, \sigma_j^2)\), also \(s_i\) and \(s_j\), for channel \(i\) and \(j\)), that a channel with less power should have larger SNR. When all \(N\) channels belong to a permutation-invariant group, we also found that the optimal power allocation problem can be transformed to an equivalent problem for \(K\) parallel channels without limited access constraint via a water-filling noise-power-redistribution process, and then the optimal power allocation is obtained via one-to-one mapping from the power allocation solution of the \(K\) equivalent channels according to KKT condition. Further investigation along this direction might be worthwhile.
Appendix A

Proofs of Lemma 2 and Theorem 1

We first provide a simple property regarding the aggregate mutual information function. This property will be used in the proofs of both Theorems 1 and 2.

Property 1. If $\min_{i \in B} p_i > 0$ and $f_i(p_i) = f_j(p_j)$ for every $i, j \in B$, then

\[
\frac{1}{F_B'(\sum_{i \in B} p_i)} = \sum_{i \in B} \frac{1}{f'_i(p_i)}.
\]

Proof. This is a direct consequence following (3.6) and the relation between the first derivative f' of a function f and its inverse $f^{(inv)}$ as:

\[
\frac{\partial f^{(inv)}(y)}{\partial y} \bigg|_{y=f(p)} = \frac{1}{f'(p)}
\]

where in the above equation, f can be replaced by either any f_i with $1 \leq i \leq N$ or the aggregate mutual information function F_B. \hfill \Box

Proof of Lemma 2. 1. For any $q \in \mathcal{Q}(B)$, we can use the assignment in the lemma to obtain a corresponding p, i.e.,

\[
p_i = \begin{cases} q_i & \text{for } i \not\in B \\ f_i^{(\text{inv})}(F_B(q_B)) & \text{for } i \in B. \end{cases}
\]

Then, we have

\[
f_i(p_i) = \begin{cases} f_i(q_i) & \text{for } i \not\in B \\ f_i(f_i^{(\text{inv})}(F_B(q_B))) = F_B(q_B) & \text{for } i \in B \end{cases}
\]
and $f_i(p_i) = f_i(q_i) < F_B(q_B)$ for $i \not\in B$ because q_i satisfies condition (ii) in $Q(B)$. Thus, $p \in P(B)$ and
\[
\sum_{i \in B} f_i(q_i) + (K + |B| - N) F_B(q_B) = \sum_{i \in B} f_i(p_i) + (K + |B| - N) \max_{1 \leq j \leq N} f_j(p_j).
\]

Since the above derivation is true for any $q \in Q(B)$, we obtain that
\[
\sup_{q \in Q(B)} \left\{ \sum_{i \not\in B} f_i(q_i) + (K + |B| - N) F_B(q_B) \right\} \leq \sup_{p \in P(B)} \left\{ \sum_{i \not\in B} f_i(p_i) + (K + |B| - N) \max_{1 \leq j \leq N} f_j(p_j) \right\}. \quad (A.3)
\]

2. Similarly, for any $p \in P(B)$, we can assign its corresponding q as
\[
q_i = p_i \text{ for } i \not\in B \quad \text{and} \quad q_B = \sum_{i \in B} p_i. \quad (A.4)
\]

Then, for $j \in B$,
\[
f_j(p_j) = F_B \left(F_B^{(\text{inv})} \left(f_j(p_j) \right) \right)
= F_B \left(\sum_{i \in B} f_i^{(\text{inv})} \left(f_j(p_j) \right) \right)
= F_B \left(\sum_{i \in B} f_i^{(\text{inv})} \left(f_i(p_i) \right) \right)
= F_B \left(\sum_{i \in B} p_i \right) = F_B(q_B)
\]
where (A.5) follows the definition of the aggregate mutual information F_B, and (A.6) holds because, according to condition (iii) in $P(B)$, $f_i(p_i) = f_j(p_j)$ for every $i \in B$. By applying conditions (ii) and (iii) in $P(B)$, we obtain for $j \not\in B$,
\[
f_j(q_j) = f_j(p_j) < \max_{1 \leq i \leq N} f_i(p_i) = \max_{i \in B} f_i(p_i) = F_B(q_B).
\]

Hence, $q \in Q(B)$ and
\[
\sum_{i \not\in B} f_i(p_i) + (K + |B| - N) \max_{1 \leq j \leq N} f_j(p_j) = \sum_{i \not\in B} f_i(q_i) + (K + |B| - N) F_B(q_B).
\]
Accordingly,

\[
\sup_{p \in \mathcal{P}(B)} \left\{ \sum_{i \notin B} f_i(p_i) + (K + |B| - N) \max_{1 \leq j \leq N} f_j(p_j) \right\}
\leq \sup_{q \in \mathcal{Q}(B)} \left\{ \sum_{i \notin B} f_i(q_i) + (K + |B| - N)F_B(q_B) \right\}. \tag{A.7}
\]

3. In summary, (A.3) and (A.7) jointly imply that equality holds for both inequalities, and the relation between maximizers \(p^* \) and \(q^* \) should follow (A.2) and (A.4).

\[\square\]

Proof of Theorem 1. We first obtain from the definition of \(F_B \) and Property 1 that for \(q > 0 \),

\[
\frac{1}{F_B'(q)} \left(\frac{1}{F_B' \left(\sum_{i \in B} f_i^{(\text{inv})}(F_B(q)) \right)} \right) = \frac{1}{F_B' \left(\sum_{i \in B} f_i^{(\text{inv})}(F_B(q)) \right)} = \sum_{i \in B} \frac{1}{f_i'(f_i^{(\text{inv})}(F_B(q)))}.
\]

We can then infer from Assumption 1 that \(F_B'(q) \) is a positive, strict decreasing and continuous function for \(q > 0 \), and \(F_B'(0) = \lim_{\rho \downarrow 0} F_B'(\rho) \). This implies that

\[
\sum_{i \in B} f_i(q_i) + (K + |B| - N)F_B(q_B) \tag{A.8}
\]

is strictly concave for \(q \in \tilde{Q}(B) \). By definition of \(q^* \) (cf. Lemma 2),

\[
\sup_{q \in \mathcal{Q}(B)} \left\{ \sum_{i \notin B} f_i(q_i) + (K + |B| - N)F_B(q_B) \right\} = \sum_{i \notin B} f_i(q_i^*) + (K + |B| - N)F_B(q_B^*).
\]

Then, the assumption that \(q^* \in \mathcal{Q}(B) \) and the strict concavity of (A.8) together imply that \(q^* \) is the unique global maximizer that maximizes (A.8) over \(\tilde{Q}(B) \). Hence, \(\bar{q} = q^* \). \[\square\]
Appendix B

Proof of Theorem 2

Two properties regarding the optimal maximal-mutual-information index set A and the optimal power allocation p^* must be established before our presenting the proof of Theorem 2.

Property 2. Fix $P > 0$. The optimal maximal-mutual-information index set A and the optimal power allocation p^* satisfy the following two properties:

1. For $j \notin A$,
 \[
 f_j'(p_j^*) \begin{cases}
 = (K + |A| - N) F'_A(\sum_{i \in A} p_i^*) & \text{if } p_j^* > 0 \\
 \leq (K + |A| - N) F'_A(\sum_{i \in A} p_i^*) & \text{if } p_j^* = 0.
 \end{cases} \tag{B.1}

2. For any $i, j \in \{1, 2, \ldots, N\}$, if $f_i(p_i^*) < f_j(p_j^*)$, then
 \[
 f_i'(p_i^*) \leq f_j'(p_j^*). \tag{B.2}

The first property indicates that the first derivative of the mutual information function attains the maximum value $(K + |A| - N) F'_A(\sum_{i \in A} p_i^*)$ whenever its respective allocated power is positive. It also indicates that $q^*_A = \sum_{i \in A} p_i^* > 0$ for $P > 0$. The second property reveals that for the optimal power assignment, a larger mutual information cannot have a smaller first derivative. These two properties will be the basis of the prove-by-contradiction technique adopted in the proof of Theorem 2.
Proof of Property 2. We first observe that \(\min_{j \in \mathcal{A}} p_j^* > 0 \). This is because if \(p_j^* = 0 \) for some \(j \in \mathcal{A} \), then (3.2) gives that \(\max_{1 \leq i \leq N} f_j(p_i^*) = f_j(p_j^*) = f_j(0) = 0 \). Thus, \(p_i^* = 0 \) for every \(1 \leq i \leq N \), and \(P = \sum_{i=1}^{N} p_i^* = 0 \), which contradicts the assumption that \(P > 0 \).

We next note that the Lagrange multipliers technique and KKT condition imply that the first derivatives of the mutual information functions achieve the maximum for those indices whose corresponding allocated powers are positive. Then by replacing \(\mathcal{B} \) by \(\mathcal{A} \) in (3.9) and by noting

\[
q_j^* = \sum_{i \in \mathcal{A}} p_i^* \geq \min_{i \in \mathcal{A}} p_i^* > 0,
\]

we obtain that for \(j \not\in \mathcal{A} \),

\[
p_j^* = q_j^* \quad \text{and} \quad f_j'(q_j^*) \begin{cases}
(K + |\mathcal{A}| - N)F_A'(q_j^*) \quad \text{if} \quad q_j^* > 0 \\
\leq (K + |\mathcal{A}| - N)F_A'(q_j^*) \quad \text{if} \quad q_j^* = 0.
\end{cases}
\]

This completes the proof of (B.1).

The proof of (B.2) can be done as follows. Suppose

\[
f_i(p_i^*) < f_j(p_j^*) \quad \text{and} \quad f_i'(p_i^*) > f_j'(p_j^*).\]

Then, \(f_j(p_j^*) > 0 \) and hence \(p_j^* > 0 \) by Assumption 1. By the continuity of functions \(f_i \), \(f'_i \), \(f_j \) and \(f'_j \), there exists \(0 < \Delta p < p_j^* \) such that

\[
f_i(p_i^* + \Delta p) < f_j(p_j^* - \Delta p) \quad \text{and} \quad f_i'(p_i^* + \Delta p) > f_j'(p_j^* - \Delta p).
\]

Hence,

\[
f_i(p_i^* + \Delta p) + f_j(p_j^* - \Delta p) > [f_i(p_i^*) + \Delta p \cdot f'_i(p_i^* + \Delta p)] + [f_j(p_j^*) - \Delta p \cdot f'_j(p_j^* - \Delta p)] \quad \text{(B.3)}
\]

\[
= f_i(p_i^*) + f_j(p_j^*) + \Delta p [f'_i(p_i^* + \Delta p) - f'_j(p_j^* - \Delta p)]
\]

\[
> f_i(p_i^*) + f_j(p_j^*)
\]

where (B.3) follows a relation derived from Assumption 1 that for every \(1 \leq k \leq N \) and \(0 < \Delta p < p \),

\[
f'_k(p + \Delta p) < \frac{f_k(p + \Delta p) - f_k(p)}{\Delta p} < f'_k(p) < \frac{f_k(p) - f_k(p - \Delta p)}{\Delta p} < f'_k(p - \Delta p).
\]
Noting that \(i \) must be outside \(\mathbb{A} \) since \(f_i(p_i^*) < f_j(p_j^*) \), we distinguish between two cases below: \(j \not\in \mathbb{A} \) and \(j \in \mathbb{A} \).

First, if \(j \not\in \mathbb{A} \), then
\[
\sum_{k \not\in \mathbb{A}} f_k(p_k^*) + (K + |\mathbb{A}| - N) \max_{1 \leq m \leq N} f_m(p_m^*)
\]
\[
= \left(\sum_{k \not\in \mathbb{A} \setminus \{i, j\}} f_k(p_k^*) + f_i(p_i^*) + f_j(p_j^*) \right) + (K + |\mathbb{A}| - N) \max_{1 \leq m \leq N} f_m(p_m^*)
\]
\[
< \sum_{k \not\in \mathbb{A} \setminus \{i, j\}} f_k(p_k^*) + f_i(p_i^* + \Delta p) + f_j(p_j^* - \Delta p) + (K + |\mathbb{A}| - N) \max_{1 \leq m \leq N} f_m(p_m^*)
\]
which contradicts the optimality of \(\mathbf{p}^* \). If however \(j \in \mathbb{A} \), then
\[
\sum_{k \not\in \mathbb{A}} f_k(p_k^*) + (K + |\mathbb{A}| - N) \max_{1 \leq m \leq N} f_m(p_m^*)
\]
\[
= \left(\sum_{k \not\in \mathbb{A} \setminus \{i\}} f_k(p_k^*) + f_i(p_i^*) \right) + \left(f_j(p_j^*) + (K + |\mathbb{A}| - N - 1) \max_{1 \leq m \leq N} f_m(p_m^*) \right)
\]
\[
< \sum_{k \not\in \mathbb{A} \setminus \{i\}} f_k(p_k^*) + f_i(p_i^* + \Delta p) + f_j(p_j^* - \Delta p) + (K + |\mathbb{A}| - N - 1) \max_{1 \leq m \leq N} f_m(p_m^*)
\]
which again contradicts the optimality of \(\mathbf{p}^* \). The proof of (B.2) is therefore completed.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. The proof of the theorem is divided into two parts.

In the forward part, we will show by induction that when \(|\mathbb{A}| < N \),
\[
\begin{aligned}
\mathbb{A} &\subseteq \mathbb{B}_{M+1} \\
(K - M) F'_{\mathbb{B}_{M+1}} \left(\sum_{i \in \mathbb{B}_{M+1}} \tilde{p}_{M,i} \right) &> f'_{2M}(\tilde{p}_{M,jM}) \\
\sum_{i \in \mathbb{B}_{M+1}} \tilde{p}_{M+1,i} &= 0
\end{aligned}
\]
hold for every \(1 \leq M \leq N - |\mathbb{A}| \). Condition (B.4b) then ensures that stop criterion (3.11) is violated for every \(1 \leq M \leq m \) for some \(m \in \{N - |\mathbb{A}|, N - |\mathbb{A}| + 1, \ldots, K - 1\} \) when \(|\mathbb{A}| < N \); hence the algorithm will not stop before finding \(\mathbb{A} \) and \(\mathbf{p}^* \). Notably, the definition of \(\mathbb{A} \) in (3.2) guarantees that \(N - |\mathbb{A}| \leq K - 1 \); hence the set \(\{N - |\mathbb{A}|, N - |\mathbb{A}| + 1, \ldots, K - 1\} \)
can never be empty. Also, according to $\tilde{p}_{M+1,i} = f_i^{(\text{inv})}(F_{B_{M+1}}(\tilde{q}_{B_{M+1}}))$ from (3.7), (B.4c) is equivalent to $\tilde{p}_{M+1,i} > 0$ for every $i \in B_{M+1}$.

After confirmation of the forward part, the converse part will subsequently be proved by induction, namely, if stop criterion (3.11) is violated for every $1 \leq M \leq m$, then $m \leq N - |A|$. An immediate consequence of the converse is that when $|A| = N$, the stop criterion (3.11) must hold at $M = 1$ because the converse can be equivalently stated (by taking $m = 1$) as that $|A| = N > N - 1$ implying the validity of (3.11) at $M = 1$.

Then the forward and converse parts together conclude that the smallest integer M_{min} that validates the stop criterion (3.11) is exactly $N - |A| + 1$. The desired result $A = B_{M_{\text{min}}}$ is therefore confirmed by deriving

$$|B_{M_{\text{min}}}| = N - M_{\text{min}} + 1 = |A|$$

and by applying (B.4a) (which has been proved to be valid for every $1 \leq M \leq N - |A| = M_{\text{min}} - 1$ in the forward part) to obtain

$$A \subseteq B_{M_{\text{min}}} \quad (\subseteq B_{M_{\text{min}}-1} \subseteq \cdots \subseteq B_2).$$

Note that stop criterion (3.11) trivially holds when $M = K$; hence, the above statement is applicable even at the extreme case that $|A| = N - K + 1$.

A. Forward part: Under $|A| < N$, (B.4a)–(B.4c) are valid for every $1 \leq M \leq N - |A| = M_{\text{min}} - 1$.

1. Preliminary:

In comparison with the optimal power allocation p^\ast, we define two index sets as follows:

$$I_M \triangleq \{ i \in B_M : \tilde{p}_{M,i} < p^\ast_i \} \quad \text{and} \quad D_M \triangleq \{ i \in B_M : \tilde{p}_{M,i} > p^\ast_i \}.$$
From their definitions, I_M consists of all indices in B_M, corresponding to which $\tilde{p}_{M,i}$ needs to be increased to reach p^*_i. In contrast, for $i \in D_M$, we shall decrease $\tilde{p}_{M,i}$ to achieve p^*_i.

We then claim that for the considered range $1 \leq M \leq N - |A|$, I_M and D_M cannot be both empty, given that $A \subseteq B_M$. This is because if both of them were empty, then $\tilde{p}_{M,i} = p^*_i$ for every $i \in B_M$. We then notice from (3.7) that function values $\{f_i(\tilde{p}_{M,i})\}$ are all equal for $i \in B_M$. Also, by definition of A from (3.2), the set A should contain all indices whose respective function values $\{f_i(p^*_i)\}$ are equal. Thus, $A \subseteq B_m$ and $\tilde{p}_{M,i} = p^*_i$ for $i \in B_M$ immediately imply that $A = B_M$. Accordingly, $I_M = D_M = \emptyset$ can only occur when $M = N - |B_M| + 1 = N - |A| + 1$, which is outside the range $1 \leq M \leq N - |A|$ that we consider here. The claim is thus validated.

2. **Validity of (B.4a)–(B.4c) when $M = 1$:**

Observe that A is always a subset of $B_1 = \{1, 2, \ldots, N\}$, so we know from the claim in 1) *Preliminary* that I_1 and D_1 cannot be both empty. Based on this, we can further reason from

$$\sum_{i=1}^N \tilde{p}_{1,i} = \sum_{i=1}^N p^*_i = P$$

that I_1 and D_1 are both non-empty. Since

$$f_i(p^*_i) = \max_{1 \leq j \leq N} f_j(p^*_j) \quad \text{for } i \in A \ (\subseteq B_1)$$

and

$$f_i(\tilde{p}_{1,i}) = F_{B_1}(P) < \max_{j \in B_1} f_j(p^*_j) = \max_{1 \leq j \leq N} f_j(p^*_j) \quad \text{for } i \in B_1 \ (\text{as } I_1 \neq \emptyset) \quad \text{(B.5)}$$

we can infer from the strict increasingness of functions $\{f_i\}$ that $\tilde{p}_{1,i} < p^*_i$ for every $i \in A$, which indicates $A \subseteq I_1$.

52
We then claim and will prove by contradiction that \(j_1 \) obtained from

\[
j_1 = \arg \min_{i \in B_1} f'_i(\tilde{p}_{1,i})
\]

(B.6)
does not belong to \(I_1 \), and therefore is not contained in \(A \). This will immediately yield \(A \subseteq B_2 = B_1 \setminus \{ j_1 \} \).

Suppose \(j_1 \in I_1 \). Then the definition of \(I_1 \) implies

\[
\tilde{p}_{1,j_1} < p^*_{j_1}.
\]

(B.7)

Because \(\sum_{i=1}^{N} \tilde{p}_{1,i} = \sum_{i=1}^{N} p^*_i = P \), (B.7) further implies the existence of another index \(k \) (in \(B_1 \)) such that

\[
\tilde{p}_{1,k} > p^*_k.
\]

(B.8)

From (3.7) and (B.6), we respectively obtain

\[
f_{j_1}(\tilde{p}_{1,j_1}) = f_k(\tilde{p}_{1,k}) = F_{B_1}(P) \quad \text{and} \quad f'_{j_1}(\tilde{p}_{1,j_1}) \leq f'_{k}(\tilde{p}_{1,k}).
\]

Then by (B.7), (B.8), the strict increasingness of functions \(f_{j_1} \) and \(f_k \), and the strict decreasingness of functions \(f'_{j_1} \) and \(f'_{k} \), we have

\[
f_{j_1}(p^*_j) > f_k(p^*_k) \quad \text{and} \quad f'_{j_1}(p^*_j) < f'_{k}(p^*_k)
\]

which contradicts (B.2) in Property 2. Accordingly, \(j_1 \not\in I_1 \).

Next, we prove that (B.4b) is valid when \(M = 1 \). Using the prove-by-contradiction technique, we suppose

\[
(K - 1)F'_{B_2} (\sum_{i \in B_2} \tilde{p}_{1,i}) \leq f'_{j_1}(\tilde{p}_{1,j_1}).
\]

(B.9)

Since for every \(1 \leq i \leq N \),

\[
\tilde{p}_{i,j} = f_i^{(inv)}(F_{B_1}(P)) > 0 \quad (\text{as } P > 0)
\]
and \(\{f_i(\tilde{p}_1,i)\} \) are all equal (to \(F_{B_1}(P) \)), we obtain from Property 1 that

\[
\frac{1}{F'_{B_2}(\sum_{i \in B_2} \tilde{p}_{1,i})} = \sum_{i \in B_2} \frac{1}{f'_i(\tilde{p}_{1,i})} = \sum_{i \in A} \frac{1}{f'_i(\tilde{p}_{1,i})} + \sum_{i \in B_2 \setminus A} \frac{1}{f'_i(\tilde{p}_{1,i})}
\]

Accordingly,

\[
\sum_{i \in A} \frac{1}{f'_i(\tilde{p}_{1,i})} = \frac{1}{F'_{B_2}(\sum_{i \in B_2} \tilde{p}_{1,i})} - \sum_{i \in B_2 \setminus A} \frac{1}{f'_i(\tilde{p}_{1,i})} \geq \frac{K - 1}{f'_{j_1}(\tilde{p}_{1,j_1})} - \sum_{i \in B_2 \setminus A} \frac{1}{f'_i(\tilde{p}_{1,i})} \tag{B.10}
\]

\[
\geq \frac{K - 1}{f'_{j_1}(\tilde{p}_{1,j_1})} - \sum_{i \in B_2 \setminus A} \frac{1}{f'_i(\tilde{p}_{1,j_1})} \tag{B.11}
\]

\[
= \frac{1}{f'_{j_1}(\tilde{p}_{1,j_1})} [(K - 1) - |B_2 \setminus A|] = \frac{1}{f'_{j_1}(\tilde{p}_{1,j_1})} [(K - 1) - (|B_2| - |A|)] \tag{B.12}
\]

\[
= \frac{1}{f'_{j_1}(\tilde{p}_{1,j_1})} (K + |A| - N) \tag{B.13}
\]

where (B.10) follows from (B.9), (B.11) is based on (B.6), (B.12) is due to \(A \subseteq B_2 \), and (B.13) is true because \(|B_2| = N - 1 \). Then based on \(A \subseteq I_1 \) and \(j_1 \not\in I_1 \), we know \(\tilde{p}_{1,i} < p^*_i \) for every \(i \in A \) and \(\tilde{p}_{1,j_1} \geq p^*_j \). Hence, from the strict decreasingness of functions \(\{f'_i\} \), (B.13) implies that

\[
f'_{j_1}(p^*_j) > (K - N + |A|) \frac{1}{\sum_{i \in A} f'_i(p^*_i)} = (K - N + |A|) F'_A(\sum_{i \in A} p^*_i)
\]

which contradicts (B.1) in Property 2.

After proving (B.4a) and (B.4b) at \(M = 1 \), what remains to be confirmed is the validity of (B.4c). Using the prove-by-contradiction technique, we first suppose (B.4c) were not true when \(M = 1 \), i.e., \(\sum_{i \in B_2} \tilde{p}_{2,i} = 0 \). Then, we obtain

\[
\tilde{p}_{2,j_1} = \sum_{i=1}^N \tilde{p}_{2,i} - \sum_{i \in B_2} \tilde{p}_{2,i} = P > 0.
\]
The KKT condition follows that

$$(K - 1)F'_{B_2} \left(\sum_{i \in B_2} \tilde{p}_{2,i} \right) \leq f'_{j_1}(\tilde{p}_{2,j_1}).$$

The strict decreasingness of functions F'_{B_2} and f'_{j_1}, together with the straightforward relations:

$$\sum_{i \in B_2} \tilde{p}_{1,i} \geq \sum_{i \in B_2} \tilde{p}_{2,i} = 0 \quad \text{and} \quad \tilde{p}_{1,j_1} \leq \tilde{p}_{2,j_1} = P,$$

implies

$$(K - 1)F'_{B_2} \left(\sum_{i \in B_2} \tilde{p}_{1,i} \right) \leq f'_{j_1}(\tilde{p}_{1,j_1})$$

which contradicts (B.4b) at $M = 1$. The proof of the case $M = 1$ is then completed.

3. **Validity of (B.4a)–(B.4c) at $M = m - 1$ implying their validity at $M = m$ for $2 \leq m \leq N - |\mathbb{A}|$:**

Based on the premise that (B.4a) is true at $M = m - 1$ (i.e., $\mathbb{A} \subseteq \mathbb{B}_m$), we know from the discussion in the Preliminary on page 51 that \mathbb{I}_m and \mathbb{D}_m cannot be both empty. So when \mathbb{I}_m is not empty, we will show $\mathbb{A} \subseteq \mathbb{I}_m$ and $j_m \not\in \mathbb{I}_m$ as similar to the proof at $M = 1$, which immediately gives $\mathbb{A} \subseteq \mathbb{B}_{m+1} = \mathbb{B}_m \setminus \{j_m\}$. We will then show by contradiction that $\mathbb{I}_m = \emptyset$ and $\mathbb{D}_m \neq \emptyset$ can never occur if (B.4a) and (B.4c) are both true at $M = m - 1$. The desired result, i.e., $\mathbb{A} \subseteq \mathbb{B}_m$ implies $\mathbb{A} \subseteq \mathbb{B}_{m+1}$ for every $2 \leq m \leq N - |\mathbb{A}|$, is therefore verified.

Case 1) $\mathbb{I}_m \neq \emptyset$.

Since

$$f_i(p^*_i) = \max_{1 \leq j \leq N} f_j(p^*_j) \quad \text{for} \quad i \in \mathbb{A} \ (\subseteq \mathbb{B}_m)$$

and

$$f_i(\tilde{p}_{m,i}) = F_{\mathbb{B}_m}(\tilde{q}_{\mathbb{B}_m}) < \max_{j \in \mathbb{B}_m} f_j(p^*_j) \leq \max_{1 \leq j \leq N} f_j(p^*_j) \quad \text{for} \quad i \in \mathbb{B}_m \ (\text{as} \ \mathbb{I}_m \neq \emptyset)$$

55
we can infer from the strict increasingness of functions \(\{f_i\} \) that \(\tilde{p}_{m,i} < p^*_i \) for every \(i \in \mathbb{A} \), which indicates \(\mathbb{A} \subseteq \mathbb{I}_m \).

In order to prove \(j_m \not\in \mathbb{I}_m \), we need to first show the existence of an index \(k \in \mathbb{B}_m \) such that \(\tilde{p}_{m,k} \geq p^*_k \). This can be proved by contradiction. Suppose no such index exists in \(\mathbb{B}_m \) (i.e., \(\mathbb{I}_m = \mathbb{B}_m \)). Because \(\sum_{i=1}^N \tilde{p}_{m,i} = \sum_{i=1}^N p^*_i = P \), there must exist an index \(u \) outside \(\mathbb{B}_m \), satisfying \(\tilde{p}_{m,u} > p^*_u \). Since \(p^*_u \geq 0 \), we know \(\tilde{p}_{m,u} \) must be strictly positive. Then we can derive by the KKT condition (i.e., the first derivatives of the mutual information functions with positive allocated powers should achieve the maximum) that

\[
(K - m + 1) F'_{\mathbb{B}_m} \left(\sum_{i \in \mathbb{B}_m} \tilde{p}_{m,i} \right) = f'_u(\tilde{p}_{m,u}) \tag{B.14}
\]

where equality in (B.14) follows from the validity of (B.4c) at \(M = m - 1 \), i.e., \(\sum_{i \in \mathbb{B}_m} \tilde{p}_{m,i} > 0 \). Since the validity of (B.4c) at \(M = m - 1 \) is equivalent to \(\tilde{p}_{m,i} > 0 \) for \(i \in \mathbb{B}_m \), and function values \(\{f_i(\tilde{p}_{m,i})\} \) are all equal also for \(i \in \mathbb{B}_m \), we have from Property 1 that

\[
\frac{1}{(K - m + 1)} \sum_{i \in \mathbb{B}_m} f'_i(\tilde{p}_{m,i}) = \frac{1}{(K - m + 1)} \cdot \frac{1}{F'_{\mathbb{B}_m} \left(\sum_{i \in \mathbb{B}_m} \tilde{p}_{m,i} \right)} = \frac{1}{f'_u(\tilde{p}_{m,u})}. \tag{B.15}
\]

Based on (B.15), we can further reason from

\[
\tilde{p}_{m,i} < p^*_i \text{ for } i \in \mathbb{I}_m = \mathbb{B}_m, \quad \tilde{p}_{m,u} > p^*_u
\]

and the strict decreasingness of functions \(\{f'_i\} \) that

\[
\frac{1}{(K - m + 1)} \sum_{i \in \mathbb{B}_m} \frac{1}{f'_i(p^*_i)} > \frac{1}{f'_u(p^*_u)}. \tag{B.16}
\]

Using again that \(p^*_i > \tilde{p}_{m,i} \) for \(i \in \mathbb{B}_m = \mathbb{I}_m \), we know that \(p^*_i > 0 \) for \(i \in \mathbb{B}_m \). Property

56
(B.1) then leads to
\[
\frac{1}{K - m + 1} \sum_{i \in \mathcal{B}_m} \frac{1}{f_i'(p_i^*)}
\]
\[
= \frac{1}{K - m + 1} \left(\sum_{i \in \mathcal{A}} \frac{1}{f_i'(p_i^*)} + \sum_{i \in \mathcal{B}_m \setminus \mathcal{A}} \frac{1}{f_i'(p_i^*)} \right)
\]
\[
= \frac{1}{K - m + 1} \left(\frac{1}{F_A'(\sum_{i \in \mathcal{A}} p_i^*)} + \sum_{i \in \mathcal{B}_m \setminus \mathcal{A}} \frac{1}{(K + |\mathcal{A}| - N) F_A'(\sum_{i \in \mathcal{A}} p_i^*)} \right)
\]
\[
\leq \frac{1}{f_u'(p_u^*)}
\]

where the last inequality cannot be replaced by an equality because \(p_u^* \) may be zero, and in the above derivation, we have implicitly applied the validity of (B.4a) at \(M = m - 1 \) to obtain \(|\mathcal{B}_m \setminus \mathcal{A}| = |\mathcal{B}_m| - |\mathcal{A}| = N - m + 1 - |\mathcal{A}| \). A contradiction to (B.16) is thus obtained. Accordingly, \(I_m \neq \mathcal{B}_m \), and hence confirmation of the existence of \(k \in \mathcal{B}_m \) such that \(\tilde{p}_{m,k} \geq p_k^* \) is completed.

We can now proceed to prove that \(j_m \not\in I_m \) by contradiction. Suppose \(j_m \in I_m \); hence, \(\tilde{p}_{m,j_m} < p_{j_m}^* \). Then following four observations below:

(a) \(f_{j_m}(\tilde{p}_{m,j_m}) = f_k(\tilde{p}_{m,k}) \),

(b) \(f'_{j_m}(\tilde{p}_{m,j_m}) = \min_{i \in \mathcal{B}_m} f'_i(\tilde{p}_{m,i}) \leq f'_k(\tilde{p}_{m,k}) \),

(c) the strict increasingness of functions \(f_{j_m} \) and \(f_k \), and

(d) the strict decreasingness of functions \(f'_{j_m} \) and \(f'_k \),

we have
\[
f_{j_m}(p_{j_m}^*) > f_k(p_k^*) \quad \text{and} \quad f'_{j_m}(p_{j_m}^*) < f'_k(p_k^*)
\]

which contradicts (B.2) in Property 2. Accordingly, \(j_m \not\in I_m \). This finishes the proof of \(\mathcal{A} \subseteq \mathcal{B}_{m+1} = \mathcal{B}_m \setminus \{j_m\} \) given \(I_m \neq \emptyset \).

57
Case 2) $\mathbb{I}_m = \emptyset$ but $\mathbb{D}_m \neq \emptyset$.

Our goal is to show that this case can never happen if (B.4a) and (B.4c) are valid at $M = m - 1$. Since $\mathbb{I}_m = \emptyset$ and $\mathbb{D}_m \neq \emptyset$, and $\sum_{i=1}^{N} \hat{p}_{m,i} = \sum_{i=1}^{N} p_i^* = P$, there exists an index u outside \mathbb{B}_m, satisfying $\hat{p}_{m,u} < p_u^*$. Thus, the KKT condition implies that

$$(K - m + 1) F'_{\mathbb{B}_m} \left(\sum_{i \in \mathbb{B}_m} \hat{p}_{m,i} \right) \geq f'_u(\hat{p}_{m,u}) \quad (B.17)$$

where the above inequality follows the premise that (B.4c) is true at $M = m - 1$.

Since the function values $\{f_i(\hat{p}_{m,i})\}$ are all equal for $i \in \mathbb{B}_m$, we have from (B.17) and Property 1 that

$$\frac{1}{(K - m + 1)} \sum_{i \in \mathbb{B}_m} f'_i(\hat{p}_{m,i}) = \frac{1}{(K - m + 1)} F'_m \left(\sum_{i \in \mathbb{B}_m} \hat{p}_{m,i} \right) \leq \frac{1}{f'_u(\hat{p}_{m,u})}. \quad (B.18)$$

Based on (B.18), we can then reason from

$$\hat{p}_{m,i} \geq p_i^* \text{ for } i \in \mathbb{B}_m, \quad \hat{p}_{m,u} < p_u^*$$

and also the strict decreasingness of functions $\{f'_i\}$ that

$$\frac{1}{(K - m + 1)} \sum_{i \in \mathbb{B}_m} f'_i(p_i^*) < \frac{1}{f'_u(p_u^*)}. \quad (B.19)$$

By noticing that $p_u^* > \hat{p}_{m,u}$ implies $p_u^* > 0$, we can derive using (B.1) in Property 2 that

$$\frac{1}{(K - m + 1)} \sum_{i \in \mathbb{B}_m} \frac{1}{f'_i(p_i^*)} = \frac{1}{(K - m + 1)} \left(\sum_{i \in A} f'_i(p_i^*) + \sum_{i \in \mathbb{B}_m \setminus A} f'_i(p_i^*) \right) \geq \frac{1}{(K - m + 1)} \left(F'_A(\sum_{i \in A} p_i^*) + \sum_{i \in \mathbb{B}_m \setminus A} \frac{1}{(K + |A| - N)} F'_A(\sum_{i \in A} p_i^*) \right)$$

$$= \frac{1}{(K + |A| - N) F'_A(\sum_{i \in A} p_i^*)} = \frac{1}{f'_u(p_u^*)}.$$
where we again implicitly use $\vert \mathbb{B}_m \setminus A \vert = \vert \mathbb{B}_m \vert - \vert A \vert = N - m + 1 - \vert A \vert$ (i.e., $A \subseteq \mathbb{B}_m$) in the above derivation. A contradiction to (B.19) is thus obtained. Therefore, $I_m = \emptyset$ and $\mathbb{B}_m \neq \emptyset$ cannot occur if (B.4a) and (B.4c) are valid at $M = m - 1$.

After the completion of the proof for $A \subseteq \mathbb{B}_{m+1}$, we next prove that (B.4b) is valid at $M = m$. Using the prove-by-contradiction technique, we suppose (B.4b) were not true at $M = m$. Then, using the just proved $A \subseteq \mathbb{B}_{m+1}$, the validity of (B.4c) at $M = m - 1$ (i.e., $\tilde{p}_{m,i} > 0$ for $i \in \mathbb{B}_m$), and the observation that the function values \{f_i(\tilde{p}_{m,i})\} are all equal for $i \in \mathbb{B}_{m+1}$, we obtain from Property 1 that

$$
\frac{1}{F'_{\mathbb{B}_{m+1}}(\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m,i})} = \sum_{i \in \mathbb{B}_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})} = \sum_{i \in A \setminus \mathbb{B}_m} \frac{1}{f'_i(\tilde{p}_{m,i})} + \sum_{i \in \mathbb{B}_{m+1} \setminus A} \frac{1}{f'_i(\tilde{p}_{m,i})}.
$$

Accordingly,

$$
\sum_{i \in A} \frac{1}{f'_i(\tilde{p}_{m,i})} = \frac{1}{F'_{\mathbb{B}_{m+1}}(\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m,i})} - \sum_{i \in \mathbb{B}_{m+1} \setminus A} \frac{1}{f'_i(\tilde{p}_{m,i})} \geq \frac{K - m}{f'_j(\tilde{p}_{m,j_m})} - \sum_{i \in \mathbb{B}_{m+1} \setminus A} \frac{1}{f'_i(\tilde{p}_{m,i})} \geq \frac{K - m}{f'_j(\tilde{p}_{m,j_m})} - \sum_{i \in \mathbb{B}_{m+1} \setminus A} \frac{1}{f'_j(\tilde{p}_{m,j_m})} = \frac{1}{f'_j(\tilde{p}_{m,j_m})} [(K - m) - (|\mathbb{B}_{m+1} \setminus A|)] = \frac{1}{f'_j(\tilde{p}_{m,j_m})} [(K - m) - (|\mathbb{B}_{m+1} \setminus A|)] = \frac{1}{f'_j(\tilde{p}_{m,j_m})} (K + |A| - N)
$$

where (B.20) follows from the assumed violation of (B.4b) at $M = m$, (B.21) is based on $j_m = \arg \min_{i \in \mathbb{B}_m} f'_i(\tilde{p}_{m,i})$, (B.22) is due to $A \subseteq \mathbb{B}_{m+1}$, and (B.23) is true because $|\mathbb{B}_{m+1}| = N - m$. Since $A \subseteq I_m$ and $j_m \not\in I_m$, we know $\tilde{p}_{m,i} < p^*_i$ for $i \in A$ and $\tilde{p}_{m,j_m} \geq p^*_j$. Hence, from the strict decreasingness of functions \{f'_i\}, (B.23) implies that

$$
f'_j(p^*_j) > (K - N + |A|) \frac{1}{\sum_{i \in A} \frac{1}{f'_i(\tilde{p}_{m,i})}} = (K - N + |A|) F'_A(\sum_{i \in A} p^*_i).
$$

A contradiction to (B.1) is thus obtained.
After proving (B.4a) and (B.4b) at \(M = m \), what remains to confirm is the validity of (B.4c). We require the next inequality to proceed:

\[
(K - m) F'_{B_{m+1}} \left(\sum_{i \in B_{m+1}} \tilde{p}_{m,i} \right) > \max_{j \notin B_{m+1}} f'_j(\tilde{p}_{m,j}) \tag{B.24}
\]

which can be proved as follows. Given that (B.4c) is true at \(M = m - 1 \) (i.e., \(\sum_{i \in B_m} \tilde{p}_{m,i} > 0 \)), we know from the KKT condition that

\[
(K - m + 1) F'_{B_m} \left(\sum_{i \in B_m} \tilde{p}_{m,i} \right) \geq \max_{j \notin B_m} f'_j(\tilde{p}_{m,j}) \tag{B.25}
\]

We can then derive

\[
\frac{1}{(K - m) F'_{B_{m+1}} \left(\sum_{i \in B_{m+1}} \tilde{p}_{m,i} \right)} = \frac{1}{(K - m) \sum_{i \in B_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})}}
\]

\[
= \frac{1}{K - m + 1} \left(\sum_{i \in B_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})} + \frac{1}{K - m} \sum_{i \in B_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})} \right)
\]

\[
= \frac{1}{K - m + 1} \left(\sum_{i \in B_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})} + \frac{1}{(K - m) F'_{B_{m+1}} \left(\sum_{i \in B_{m+1}} \tilde{p}_{m,i} \right)} \right)
\]

\[
< \frac{1}{K - m + 1} \left(\sum_{i \in B_{m+1}} \frac{1}{f'_i(\tilde{p}_{m,i})} + \frac{1}{f'_{j_m}(\tilde{p}_{m,j_m})} \right) \tag{B.26}
\]

\[
= \frac{1}{K - m + 1} \sum_{i \in B_m} \frac{1}{f'_i(\tilde{p}_{m,i})}
\]

\[
= \frac{1}{(K - m + 1) F'_{B_m} \left(\sum_{i \in B_m} \tilde{p}_{m,i} \right)}
\]

\[
\leq \min_{j \notin B_m} \left\{ \frac{1}{f'_j(\tilde{p}_{m,j})} \right\} \tag{B.27}
\]

where (B.26) follows from the validity of (B.4b) at \(M = m \), and (B.27) is a consequence of (B.25). By applying the validity of (B.4b) at \(M = m \) again, we have

\[
(K - m) F'_{B_{m+1}} \left(\sum_{i \in B_{m+1}} \tilde{p}_{m,i} \right) > \max \left\{ f_{j_m}(\tilde{p}_{m,j_m}), \max_{j \notin B_m} f'_j(\tilde{p}_{m,j}) \right\}
\]

\[
= \max_{j \notin B_{m+1}} f'_j(\tilde{p}_{m,j})
\]

Inequality (B.24) is thus proved.
We proceed to prove (B.4c) by contradiction. Suppose (B.4c) were not true at \(M = m \) (i.e., \(\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m+1,i} = 0 \)). Then by the assumed validity of (B.4c) at \(M = m - 1 \) (i.e., \(\tilde{q}_{\mathbb{B}_m} = \sum_{i \in \mathbb{B}_m} \tilde{p}_{m,i} > 0 \)), we have

\[
\tilde{p}_{m,i} = f_i^{(inv)}(F_{\mathbb{B}_m}(\tilde{q}_{\mathbb{B}_m})) > 0 \quad \text{for } i \in \mathbb{B}_m
\]

and hence

\[
\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m,i} > \sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m+1,i} = 0 \quad \text{(B.28)}
\]

because \(\mathbb{B}_{m+1} \subset \mathbb{B}_m \). Inequality (B.28) and \(\sum_{i=1}^N \tilde{p}_{m,i} = \sum_{i=1}^N \tilde{p}_{m+1,i} = P \) then implies

\[
\sum_{j \notin \mathbb{B}_{m+1}} \tilde{p}_{m,j} < \sum_{j \notin \mathbb{B}_{m+1}} \tilde{p}_{m+1,i}
\]

which immediately indicates that there exists \(k \notin \mathbb{B}_{m+1} \) such that

\[
\tilde{p}_{m,k} < \tilde{p}_{m+1,k} \quad \text{and} \quad \tilde{p}_{m+1,k} > 0. \quad \text{(B.29)}
\]

The KKT condition thus follows that

\[
(K - m)F'_{\mathbb{B}_{m+1}} \left(\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m+1,i} \right) \leq f'_k(\tilde{p}_{m+1,k}).
\]

The strict decreasingness of functions \(F'_{\mathbb{B}_{m+1}} \) and \(f'_k \), together with (B.28) and (B.29), implies

\[
(K - m)F'_{\mathbb{B}_{m+1}} \left(\sum_{i \in \mathbb{B}_{m+1}} \tilde{p}_{m,i} \right) < f'_k(\tilde{p}_{m,k})
\]

which contradicts (B.24). The proof of the forward part is thus completed.

B. Converse part: If the stop criterion (3.11) is violated for every \(1 \leq M \leq m \), where \(m \in \{1, 2, \ldots, K - 1\} \), then \(|A| \leq N - m\).

We now prove the converse part by induction.
1. Validity of the converse statement at $m = 1$:

It suffices to prove that $|A| = N$ cannot be true if (3.11) is violated at $M = 1$, and we prove this by contradiction. Suppose $|A| = N$. Then, $\hat{p}_1 = p^*$ is the optimal power allocation, and for every $1 \leq i \leq N$, $\hat{p}_{1,i} = f_j^{(\text{inv})}(F_B(P)) > 0$ because $P > 0$.

Observe that the violation of (3.11) at $M = 1$ tells that

$$ (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i}) > f_j' (\hat{p}_{1,j_1}). $$

By the continuity and strict decreasingness of functions F_{B_2}' and f_j', there exists $0 < \Delta p < \hat{p}_{1,j_1}$ such that

$$ (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) > f_j' (\hat{p}_{1,j_1} - \Delta p). $$

Hence, using an argument similar to (B.3) yields

$$ (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) + f_j (\hat{p}_{1,j_1} - \Delta p) > (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) + f_j (\hat{p}_{1,j_1}) $$

$$ + [f_j (\hat{p}_{1,j_1}) - \Delta p \cdot f_j' (\hat{p}_{1,j_1} - \Delta p)] $$

$$ = (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) + f_j (\hat{p}_{1,j_1}) $$

$$ + \Delta p [(K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) - f_j' (\hat{p}_{1,j_1} - \Delta p)] $$

$$ > (K - 1)F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i}) + f_j (\hat{p}_{1,j_1}). \quad \text{(B.30)} $$

Consequently, another power allocation

$$ \hat{p}_j \triangleq \begin{cases} \hat{p}_{1,j} - \Delta p & \text{if } j = j_1 \\ f_j^{(\text{inv})}(F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p)) & \text{otherwise} \end{cases} $$

which satisfies the power-sum constraint:

$$ \sum_{j=1}^{N} \hat{p}_j = \hat{p}_{j_1} + \sum_{j \in B_2} \hat{p}_j $$

$$ = (\hat{p}_{1,j_1} - \Delta p) + \sum_{j \in B_2} f_j^{(\text{inv})}(F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p)) $$

$$ = (\hat{p}_{1,j_1} - \Delta p) + F_{B_2}' (\sum_{i \in B_2} \hat{p}_{1,i} + \Delta p) $$

$$ = (\hat{p}_{1,j_1} - \Delta p) + \left(\sum_{j \in B_2} \hat{p}_{1,j} + \Delta p \right) = \sum_{j=1}^{N} \hat{p}_{1,j} = P $$

62
will give that for every $j \in \mathcal{B}_2$,

$$
\begin{align*}
 f_j(\hat{p}_j) &= F_{\mathcal{B}_2} \left(\sum_{i \in \mathcal{B}_2} \hat{p}_{1,i} + \Delta p \right) \\
 &> F_{\mathcal{B}_2} \left(\sum_{i \in \mathcal{B}_2} \hat{p}_{1,i} \right) \\
 &= F_{\mathcal{B}_2} \left(\sum_{i \in \mathcal{B}_2} f_{i}^{\text{inv}}(F_{\mathcal{A}}(P)) \right) \\
 &= F_{\mathcal{B}_2} \left(F_{\mathcal{B}_2}^{\text{inv}}(F_{\mathcal{A}}(P)) \right) \\
 &= F_{\mathcal{A}}(P) \\
 &= f_{j_1}(\hat{p}_{1,j_1}) > f_{j_1}(\hat{p}_{j_1}) = f_{j_1}(\hat{p}_{1,j_1} - \Delta p).
\end{align*}
$$

The above inequality and (B.30) then jointly imply that for some $u \in \mathcal{B}_2$,

$$
\min_{\{s \in \{0,1\}^N : \sum_{i=1}^N s_i = K\}} \sum_{j=1}^N s_j f_j(\hat{p}_j) = (K - 1)f_u(\hat{p}_u) + f_{j_1}(\hat{p}_{j_1}) \\
= (K - 1)F_{\mathcal{B}_2} \left(\sum_{i \in \mathcal{B}_2} \hat{p}_{1,i} + \Delta p \right) + f_{j_1}(\hat{p}_{1,j_1} - \Delta p) \\
> (K - 1)F_{\mathcal{B}_2} \left(\sum_{i \in \mathcal{B}_2} \hat{p}_{1,i} \right) + f_{j_1}(\hat{p}_{1,j_1}) = K \cdot F_{\mathcal{A}}(P) \\
= \min_{\{s \in \{0,1\}^N : \sum_{i=1}^N s_i = K\}} \sum_{j=1}^N s_j f_j(\hat{p}_{1,j}).
$$

This indicates that \hat{p}_1 cannot be the optimal power allocation p^\ast. The desired contradiction is thus obtained.

2. **Validity of the converse statement at** $m = k - 1$ **implying its validity at** $m = k$ **for** $2 \leq k \leq K - 1$:

We are given that the stop criterion (3.11) is violated for every $1 \leq M \leq k - 1$ and have already confirmed that $|A| \leq N - k + 1$. Now, since the stop criterion is violated again for $M = k$, we should then prove that $|A| \neq N - k + 1$, which immediately implies the desired $|A| \leq N - k$. We use the prove-by-contradiction technique.

Suppose $|A| = N - k + 1$. Then, $\hat{p}_k = p^\ast$ is the optimal power allocation, since we have already proven in the forward part that $A \subseteq \mathcal{B}_{N - |A| + 1} = \mathcal{B}_k$, which together with

$$
|A| = N - k + 1 = |\mathcal{B}_k|
$$

results in $A = \mathcal{B}_k$. By definition of A in (3.2), we get

$$
\max_{i \in \mathcal{B}_k} \{ f_i(\hat{p}_{k,i}) \} < f_j(\hat{p}_{k,j}) \text{ for } j \in \mathcal{B}_k = A. \quad \text{(B.31)}
$$
Inequality (B.31) then implies that $f_{jk}(\tilde{p}_{k,jk}) > 0$; hence, $\tilde{p}_{k,jk} > 0$. Observe that the violation of (3.11) at $M = k$ tells that

$$(K - k)F'_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} \right) > f'_{jk}(\tilde{p}_{k,jk}).$$

By the continuity and strict decreasingness of functions $F'_{B_{k+1}}$ and f'_{jk}, there exists $0 < \Delta p < \tilde{p}_{k,jk}$ such that

$$(K - k)F'_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} + \Delta p \right) > f'_{jk}(\tilde{p}_{k,jk} - \Delta p).$$

Hence, through the same procedure as (B.30), we obtain

$$(K - k)F'_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} + \Delta p \right) + f_{jk}(\tilde{p}_{k,jk} - \Delta p) > (K - k)F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} \right) + f_{jk}(\tilde{p}_{k,jk}). \quad (B.32)$$

Consequently, another power allocation

$$\hat{p}_j \triangleq \begin{cases}
\tilde{p}_{k,j} & \text{if } j \notin B_k \\
\tilde{p}_{k,j} - \Delta p & \text{if } j = j_k \\
f^{(\text{inv})}_j(F_{B_{k+1}}(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} + \Delta p)) & \text{if } j \in B_{k+1}
\end{cases}$$

which satisfies the power-sum constraint:

$$\sum_{j=1}^{N} \hat{p}_j = \sum_{j \in B_k} \tilde{p}_{k,j} + (\tilde{p}_{k,j_k} - \Delta p) + \left(\sum_{j \in B_{k+1}} \tilde{p}_{k,j} + \Delta p \right) = \sum_{j=1}^{N} \hat{p}_{k,j} = P$$

will give that for every $j \in B_{k+1},$

$$f_j(\hat{p}_j) = F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} + \Delta p \right) > F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \tilde{p}_{k,i} \right) = f_{jk}(\tilde{p}_{k,jk}) > \max \left\{ f_{jk}(\tilde{p}_{k,jk}), \max_{i \in B_k} f_i(\tilde{p}_{k,i}) \right\} \quad (B.33)$$

where the last strict inequality in (B.33) follows the strict increasingness of function
\(f_{j_k} \) and (B.31). The above inequality and (B.32) then jointly imply
\[
\min_{\{s \in \{0, 1\}^N : \sum_{i=1}^N s_i = K\}} \sum_{j=1}^N s_j f_j(\hat{p}_j) \\
= (K - k) F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \bar{p}_{k,i} \right) + f_{j_k}(\hat{p}_{k,j_k}) + \sum_{i \notin B_k} f_i(\hat{p}_{k,i}) \\
= (K - k) F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \bar{p}_{k,i} + \Delta p \right) + f_{j_k}(\hat{p}_{k,j_k} - \Delta p) + \sum_{i \notin B_k} f_i(\hat{p}_{k,i}) \\
> (K - k) F_{B_{k+1}} \left(\sum_{i \in B_{k+1}} \bar{p}_{k,i} \right) + f_{j_k}(\hat{p}_{k,j_k}) + \sum_{i \notin B_k} f_i(\hat{p}_{k,i}) \\
= \min_{\{s \in \{0, 1\}^N : \sum_{i=1}^N s_i = K\}} \sum_{j=1}^N s_j f_j(\hat{p}_{k,j}).
\]

This indicates that \(\bar{p}_k \) cannot be the optimal power allocation \(p^* \). The desired contradiction is thus obtained.

\[\Box\]
Appendix C

Proofs of the Theorem, Lemmas and Corollaries in Chapter 5

C.1 Proof of Theorem 4

By noting $\hat{p}_{M,i} = f_{i}^{(\text{inv})}(F_{B_{M}}(\tilde{q}_{B_{M}}))$ for $i \in B_{M}$ and letting $y = F_{B_{M}}(\tilde{q}_{B_{M}})$, (3.10) can be equivalently written as

$$f'_{j_{M}}f_{j_{M}}^{(\text{inv})}(y) = \min_{i \in B_{M}} f'_{i}f_{i}^{(\text{inv})}(y)$$

Thus the condition in Theorem 4 implies that $j_{M} = k_{M}$ for $M = 1, 2, 3, \ldots$.

C.2 Proof of Lemma 3

1. (5.1) implies the existence of $\delta > 0$ such that

$$f'_{1}f_{1}^{(\text{inv})}(y) \leq f'_{2}f_{2}^{(\text{inv})}(y) \leq \cdots \leq f'_{N}f_{N}^{(\text{inv})}(y) \quad \text{for } 0 < y < \delta. \quad (C.1)$$

Thus following similar proof of Theorem 4, we have $j_{i} = i$ when the total power P is less than $\min_{1 \leq i \leq N} f_{i}^{(\text{inv})}(\delta)$.

2. We first show that the allocated power $\tilde{q}_{B_{M}}$ will go to infinity as $P \to \infty$.
Recall that the KKT condition gives

\[(K - N + |\mathbb{B}_M|)F_{\mathbb{B}_M}'(\tilde{q}_{\mathbb{B}_M}) = \begin{cases} \nu & \text{if } \tilde{q}_{\mathbb{B}_M} > 0 \\ \leq \nu & \text{if } \tilde{q}_{\mathbb{B}_M} = 0 \end{cases} \]

(C.2)

and for \(i \notin \mathbb{B}_M \),

\[f_i'(\tilde{q}_{M,i}) = \begin{cases} \nu & \text{if } \tilde{q}_{M,i} > 0 \\ \leq \nu & \text{if } \tilde{q}_{M,i} = 0 \end{cases} \]

(C.3)

where the Lagrange multiplier \(\nu \) is chosen such that \(\sum_{i \notin \mathbb{B}_M} \tilde{q}_{M,i} + \tilde{q}_{\mathbb{B}_M} = P \). This then implies that \(\tilde{q}_{\mathbb{B}_M} \) will go to infinity as \(P \to \infty \), because if there exists a sequence \(P_1, P_2, P_3, \ldots \), such that \(\lim_{k \to \infty} P_k = \infty \) and

\[\sup_{k \geq 1} \tilde{q}_{\mathbb{B}_M} = \sup_{k \geq 1} \tilde{q}_{\mathbb{B}_M}(P_k) < \infty \]

then we can use \(\sum_{i \notin \mathbb{B}_M} \tilde{q}_{M,i} + \tilde{q}_{\mathbb{B}_M} = P \) to obtain that

\[\lim_{k \to \infty} \sum_{i \notin \mathbb{B}_M} \tilde{q}_{M,i} = \lim_{k \to \infty} \sum_{i \notin \mathbb{B}_M} \tilde{q}_{M,i}(P_k) = \infty \]

which then implies the existence of sequence \(m_1, m_2, m_3, \ldots \notin \mathbb{B}_M \) (where \(m_k = m_k(P_k) \)) such that \(\tilde{q}_{M,m_k} > 0 \) or equivalently \(f_{m_k}'(\tilde{q}_{M,m_k}) = \nu \) for all sufficiently large \(k \) and \(\tilde{q}_{M,m_k} \to \infty \) as \(k \to \infty \). Since \(\lim_{k \to \infty} f_i'(\tilde{q}_{M,m_k}) = 0 \) for every \(i \notin \mathbb{B}_M \), we have \(\lim_{k \to \infty} \nu = 0 \); hence, \(\lim_{k \to \infty} (K - N + |\mathbb{B}_M|)F_{\mathbb{B}_M}'(\tilde{q}_{\mathbb{B}_M}) = 0 \) by (C.2), which is a contradiction to \(\sup_{k \geq 1} \tilde{q}_{\mathbb{B}_M} < \infty \). As a consequence, \(\tilde{q}_{\mathbb{B}_M} \) diverges to infinity for every sequence \(P_1, P_2, P_3, \ldots \), and therefore, \(\lim_{P \to \infty} \tilde{q}_{\mathbb{B}_M} \) exists and is equal to \(\infty \).

Next, we observe that (5.2) implies

\[\omega_1 \leq \omega_2 \leq \cdots \leq \omega_N \]

(C.4)

because if \(\omega_i > \omega_j \) for some \(1 \leq i < j \leq N \), then

\[\lim_{y \uparrow \min\{\omega_i, \omega_j\}} \sup_{y \uparrow \min\{\omega_i, \omega_j\}} \text{sgn} \left(f_i'f_i'(iav)(y) - f_j'f_j'(iav)(y) \right) = 1 \]
which is a contradiction to (5.2). Then (5.2) and (C.4) togetherly imply that for \(1 \leq i < N\), there exists \(\delta_i > 0\) such that for \(\omega_i - \delta_i \leq y \leq \omega_i\),

\[
f_i'(f_i^{(\text{inv})}(y)) \leq f_i'(f_i^{(\text{inv})}(y)) \quad \text{for every } 1 \leq u \leq N - i.
\]

(C.5)

In addition, by noting \(\tilde{p}_{M,i} = f_i^{(\text{inv})}(F_{B_M}(q_{BM}))\) for \(i \in B_M\) and letting \(y = F_{B_M}(q_{BM})\), (3.10) can be equivalently written as

\[
f_j'f_j^{(\text{inv})}(y) = \min_{i \in B_M} f_i'f_i^{(\text{inv})}(y).
\]

(C.6)

Consider \(M = 1\). Since \(\lim_{P \to \infty} q_{B_1} = \infty\), we obtain from \(\lim_{q \to \infty} F_{B_M}(q) = \min_{i \in B_M} \omega_i\) that \(F_{B_1}(q_{B_1})\) will lie in \([\omega_1 - \delta_1, \omega_1]\) as \(P\) sufficiently large. Condition (C.5) (with setting \(i = 1\)) and (C.6) then jointly imply \(j_1 = 1\) as \(P\) sufficiently large. We can repeat the procedure by further enlarging \(P\) (whenever necessary) to make \(F_{B_2}(q_{B_2}) \in [\omega_2 - \delta_2, \omega_2]\), and obtain \(j_2 = 2\) in the high-power regime. A similar argument can be applied to obtain \(j_M = M\) for \(M = 3, 4, \ldots\).

C.3 Proof of Corollary 1

1. That (5.3c) implies (5.1) is obvious. From (5.3a), we can infer by the continuity of \(f_j'\) that there exists \(\gamma > 0\) such that \(f_j'(0) < f_j'(\gamma)\). So for \(0 < y < f_j'(\gamma)\), we have \(0 < f_j^{(\text{inv})}(y) < \gamma\) by \(f_j'(0) = 0\) and the strictly increasingness of \(f_j\). Hence,

\[
f_j'f_j^{(\text{inv})}(y) < f_j'(0) < f_j'(\gamma) < f_j'f_j^{(\text{inv})}(y)
\]

where the first and last strict inequalities follow the strict decreasingness of \(f_i'\) and \(f_j'\), respectively. Confirmation of (5.3a) implying (5.1) is then completed. It remains to verify that (5.3b) implies (5.1). By definition, \(f_i''(0) < f_j''(0)\) implies the existence of \(\delta > 0\) such that \(f_i''(p) < f_j''(p)\) for \(0 < p < \delta\), which together with \(f_i'(0) = f_j'(0)\) implies \(f_i'(p) < f_j'(p)\) for \(0 < p < \delta\). Thus (5.3b) implies (5.3c), which in turns implies (5.1).
2. Since \(\omega_i < \omega_j \), we have

\[
\lim_{y \to \omega_i} f_i' f_i^{(\text{inv})}(y) = 0 \quad \text{and} \quad \lim_{y \to \omega_i} f_j' f_j^{(\text{inv})}(y) = f_j' f_j^{(\text{inv})}(\omega_i) > 0.
\]

Thus, (5.2) is valid.

C.4 Proof of Lemma 4

We first observe that (3.11) can be re-written as

\[
(K - M) \leq \frac{f'_j M_{M+1} (\tilde{p}_{M,j})}{F'_{B_{M+1}} (\sum_{i \in B_{M+1}} \tilde{p}_{M,i})} = \sum_{i \in B_{M+1}} \frac{f'_i (\tilde{p}_{M,i})}{f'_i f_i^{(\text{inv})}(y)}
\]

where \(y = F_{B_M} (\tilde{q}_{B_M}) = f_i (\tilde{p}_{M,i}) \) for \(i \in B_M \), and (B.4c) guarantees \(\sum_{i \in B_{M+1}} \tilde{p}_{M,i} > 0 \) and hence \(F'_{B_{M+1}} (\sum_{i \in B_{M+1}} \tilde{p}_{M,i}) < \infty \). Based on this observation and noting

\[
F_{B_M} (\tilde{q}_{B_M}) \to \begin{cases}
0 & \text{when } P \to 0 \\
\Omega(B_M) & \text{as } \tilde{q}_{B_M} \to \infty \text{ when } P \to \infty
\end{cases}
\]

this lemma becomes straightforward.

C.5 Proof of Corollary 2

1. Re-write (5.11) as

\[
(K - M) F'_{B_{M+1}} (0) < f'_j (0). \quad (C.7)
\]

Then, a similar proof for (5.3a) can be used to prove (5.11) implying (5.7). Note the validity of (5.11) implicitly indicates the finiteness of \(\min_{i \in B_{M+1}} f'_i (0) \) because \(\min_{i \in B_{M+1}} f'_i (0) = \infty \) would fail (5.11); so \(F'_{B_{M+1}} (0) < \infty \).

2. That (5.12) is a sufficient condition for (5.8) can be proved in the same way as item 1) by reversing the order of inequality (C.7); hence, we omit it.
3. Since (5.13) implies
\[
\limsup_{y \to \Omega(B_M)} \left(K - M - \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \right) = (K - M) - \liminf_{y \to \Omega(B_M)} \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \\
\leq (K - M) - \sum_{i \in B_{M+1}} \liminf_{y \to \Omega(B_M)} f'_{j_M} f'_{j_M}^{(inv)}(y) \\
< 0
\]
we have
\[
\limsup_{y \to \Omega(B_M)} \text{sgn} \left(K - M - \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \right) = -1
\]
which validates (5.9).

4. Again, since (5.14) implies
\[
\liminf_{y \to \Omega(B_M)} \left(K - M - \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \right) = (K - M) - \limsup_{y \to \Omega(B_M)} \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \\
\geq (K - M) - \sum_{i \in B_{M+1}} \limsup_{y \to \Omega(B_M)} f'_{j_M} f'_{j_M}^{(inv)}(y) \\
> 0
\]
we have
\[
\liminf_{y \to \Omega(B_M)} \text{sgn} \left(K - M - \sum_{i \in B_{M+1}} f'_{j_M} f'_{j_M}^{(inv)}(y) \right) = 1
\]
which validates (5.10).

Finally, if \(j_1, j_2, j_3, \ldots \) are determined according to condition (5.2) in Lemma 3, then
\[
\begin{align*}
\omega_{j_1} & \leq \omega_{j_2} \leq \omega_{j_3} \leq \cdots \\
\Omega(B_M) &= \omega_{j_M}
\end{align*}
\]
where (C.8a) has been proved in (C.4), and (C.8b) is a consequence of (C.8a). Based on these results, we can derive from (5.15) that for \(i \in B_{M+1}, \)
\[
\limsup_{y \to \Omega(B_M)} \frac{f'_{j_M} f'_{j_M}^{(inv)}(y)}{f'_{j_M} f'_{j_M}^{(inv)}(y)} = 0,
\]
which validates (5.10).
because $\omega_{j_1} < \omega_{j_{M+1}}$ implies $f'_{j_{M+1}} f^{(\text{inv})}_{j_{M+1}}(y)$ approaching zero and $f'_i f^{(\text{inv})}_i(y)$ being bounded away from zero as y approaching $\Omega(\mathbb{B}_M) = \omega_{j_M}$. The proof is thus completed.

C.6 Proof of Lemma 5

Recall that the KKT condition gives

\[(K - N + |A|)F'_A(q^*_A) = \nu \quad \text{and for } i \notin A, f'_i(q^*_i) \begin{cases} = \nu & \text{if } q^*_i > 0 \\ \leq \nu & \text{if } q^*_i = 0 \end{cases} \tag{C.10} \]

where we have used the fact that $q^*_A = q^*_A > 0$ (see (B.4c)), and the Lagrange multiplier ν is chosen such that $\sum_{i \notin A} q^*_i + q^*_A = P$. We then distinguish among the below three cases:

Case 1: $f'_i(0) > (K - N + |A|)F'_A(0)$ for some $i \notin A$. In this case, there exists $\gamma > 0$ such that

\[f'_i(q) > (K - N + |A|)F'_A(0) \quad \text{for every } 0 < q < \gamma. \]

Hence, when $0 < P < \gamma$, we have

\[\nu \geq f'_i(q^*_i) \geq f'_i(P) > (K - N + |A|)F'_A(0) > (K - N + |A|)F'_A(q^*_A) \]

where the last strict inequality follows the strict decreasingness of F'_A. This contradicts (C.10); hence, Case 1 cannot happen.

Case 2: $f'_i(0) < (K + |A| - N)F'_A(0)$ for some $i \notin A$.

In this case, there exists $\gamma > 0$ such that

\[f'_i(0) < (K + |A| - N)F'_A(q) \quad \text{for every } 0 < q < \gamma. \]

Hence, when $0 < P < \gamma$, we have

\[f'_i(q^*_i) \leq f'_i(0) < (K + |A| - N)F'_A(P) \leq (K + |A| - N)F'_A(q^*_A) = \nu \]

71
which implies \(q^*_i = 0 \) for any \(0 < P < \gamma \).

Case 3: \(f'_i(0) = (K + |A| - N)F'_{\tilde{A}}(0) \) for some \(i \in \tilde{A} \).

In this case, \(q_i^* > 0 \) for \(P > 0 \) fixed, because if \(q_i^* = 0 \), we obtain

\[
\nu \geq f'_i(q^*_i) = f'_i(0) = (K + |A| - N)F'_{\tilde{A}}(0) > F'_{\tilde{A}}(q^*_A)
\]

which then contradicts (C.10). Based on \(q^*_i > 0 \) and \(q^*_A > 0 \) for \(P > 0 \), we derive from (C.10) that

\[
\lim_{P \to 0} \frac{q_i^*}{q^*_A} = \lim_{\nu \to f'_i(0)} \frac{f'_i(\nu)}{F'_{\tilde{A}}(\nu / (K - N + |A|))} = \lim_{\nu \to f'_i(0)} \frac{1}{f''_i(\nu)} \frac{1}{(K - N + |A|)F''_{\tilde{A}}(\nu / (K - N + |A|))} = \frac{K - N + |A|}{F''_{\tilde{A}}(0)} \frac{f''_i(0)}{f''_i(0)} = (K - N + |A|) \frac{F''_{\tilde{A}}(0)}{f''_i(0)}
\]

(C.11)

The proof for (5.16) is completed.

We now turn to the power allocations for channels \(i, j \in \tilde{A} \). By

\[
f_i(p^*_i) = f_j(p^*_j) = F_{\tilde{A}}(q^*_A) (= y)
\]

we derive

\[
\lim_{P \to 0} \frac{p^*_i}{p^*_j} = \lim_{y \to 0} \frac{f_i(y)}{f_j(y)} = \frac{1}{f''_i(0)} \frac{1}{f''_j(0)} \frac{1}{f''_i(0)} \frac{1}{f''_j(0)}
\]

(C.13)

C.7 Proof of Observation 1

The result for 1) is a direct consequence of the given rates of convergence, and the result for 2) follows similarly to (C.13). Hence, we omit them.
Bibliography

About the Author

Shih-Wei Wang was born in Pingtung, R.O.C., in 1981. He received the B.S. and M.S. degrees in electrical engineering from the National Central University, Chungli, Taiwan, in 2003 and 2005, respectively. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan. He held a visiting position with Queen’s University, Kingston, Canada, in 2010. His research interests lie in information theory and convex optimization.