
國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學國 立 交 通 大 學

電信工程研究所電信工程研究所電信工程研究所電信工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

應用於VoIP系統之以軟體實現的H.323閘道器與

代理轉碼器之嶄新互動架構

A Novel Software-Based H.323 Gateway with
Proxy-TC for VoIP Systems

研研研研 究究究究 生：殷偉盛生：殷偉盛生：殷偉盛生：殷偉盛

指導教授：陳伯寧指導教授：陳伯寧指導教授：陳伯寧指導教授：陳伯寧 博士博士博士博士

㆗華民國九十年五月

應用於VoIP系統之以軟體實現的H.323閘道器與代理轉碼器

之嶄新互動架構

A Novel Software-Based H.323 Gateway with Proxy-TC for
VoIP Systems

研研研研 究究究究 生：殷偉盛生：殷偉盛生：殷偉盛生：殷偉盛 Student：Wei-Sheng Yin

指導教授：陳伯寧指導教授：陳伯寧指導教授：陳伯寧指導教授：陳伯寧 博士博士博士博士 Advisor：Dr. Po-Ning Chen

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學
電電電電 信信信信 工工工工 程程程程 研研研研 究究究究 所所所所

碩碩碩碩 士士士士 論論論論 文文文文

A Thesis

Submitted to Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electrical Engineering

May 2001

Hsinchu, Taiwan, Republic of China

㆗華民國九十年五月㆗華民國九十年五月㆗華民國九十年五月㆗華民國九十年五月

 i

應用於應用於應用於應用於VoIP系統之以軟體實現的系統之以軟體實現的系統之以軟體實現的系統之以軟體實現的H.323閘道器與代理轉碼器閘道器與代理轉碼器閘道器與代理轉碼器閘道器與代理轉碼器

之嶄新互動架構之嶄新互動架構之嶄新互動架構之嶄新互動架構

學生：殷偉盛 指導教授：陳伯寧 博士

國立交通大學電信工程研究所

㆗文摘要㆗文摘要㆗文摘要㆗文摘要

在這㆒篇碩士論文當㆗，我們針對運作於個㆟電腦平台㆖軟體實

現的 H.323閘道器提出了㆒個嶄新架構。這個動機是基於兩個觀察。

首先，我們觀察到㆒個軟體實現的H.323閘道器的計算量負載，主要

是來自於不同媒體格式的轉換動作，例如轉換語音的編碼格式。我們

也觀察到㆒個網際網路電話終端機(在我們的系統㆗，網際網路電話

終端機是建構在個㆟電腦㆖)或是㆒個軟體實現的H.323閘道器所需

使用的CPU計算資源，有時會被作業系統切換到其他的工作；因此，

㆒個正在進行㆗的網際網路電話可能會有瞬時的不順暢或㆗斷。因此

我們提出㆒個代理轉碼器(proxy-TC) 架構來平衡網際網路電話所需

的計算量負載，同時平緩所給定計算資源的浮動。根據我們的模擬顯

示，在我們所提的架構之㆘，系統的容量和新進電話的阻斷率

(blocking probability) 會有相當大的改善。除此之外，我們的模擬結

果 也 顯 示 ， 加 入 代 理 轉 碼 器 之 間 的 移 轉 機 制 (TC-handoff

mechanism)，僅僅微量的提高新進電話阻斷率，卻可使電話㆗斷率

(dropping probability) 大幅的降低。

 ii

A Novel Software-Based H.323 Gateway with Proxy-TC for

VoIP Systems

Student：Wei-Sheng Yin Advisor：Dr. Po-Ning Chen

Institute of Communications Engineering
National Chiao Tung University

ABSTRACT
In this paper, we present a novel architecture for software-based H.323

gateways that operate over PC platforms. It is motivated by two

observations. First, we found that the computation load of a

software-based H.323 gateway is mainly contributed by media

transformation activities, such as the transcoding of voice streams. We

also observed that the CPU computation power of an IP call terminal

(which is a PC in our system setting) or a software-based H.323 gateway

may be unevenly switched to another task by the operation system; hence,

an active IP call may experience occasional interrupts. We therefore

propose a proxy–transcoder (proxy-TC) architecture to balance the

computation load of, as well as to smooth the fluctuation of dedicated

computation powers to, the IP call activities. Our simulation showed that

both the system capacity and the new call blocking probability can be

significantly improved under our proposed architecture. Besides, by

adding an additional TC-handoff mechanism, the active call dropping

probability can be drastically decreased at the expense of a little increase

in the new call blocking probability.

 iii

Table of Contents

Introduction.. 1

Proxy-TC Architecture... 3

 2.1 Motivations.. 3

 2.2 System Architecture .. 5

 2.3 Proxy-Transcoder (Proxy-TC)... 7

 2.4 The GW-TC signaling ... 8

 2.5 GW-TC signaling procedure ... 10

 2.6 The handoff mechanism .. 12

 2.7 The error recovery procedure .. 13

 2.8 Data structure... 16

Simulation Model and Results ... 17

 3.1 The simulation model .. 17

 3.2 Performance indices .. 20

 3.3 The simulation results ... 21

Conclusions and Future Work.. 26

REFERENCE... 27

 iv

List of Figures

Fig. 1 The software-based gateway with proxy-TC architecture. 5

Fig. 2 The structure of a proxy-TC. ... 7

Fig. 3 A normal call setup procedure... 10

Fig. 4 A normal call clearing procedure. ... 11

Fig. 5 The handoff procedure... 12

Fig. 6 The error recovery procedure for call setup. 14

Fig. 8 The error recovery procedure for update procedure.................. 15

Fig. 9 The error recovery procedure for release procedure 16

Fig. 10 Simulation Model .. 18

Fig. 11 CPU utilization of (a) gateway (b) proxy-TC1 (c) proxy-TC2 (d)
proxy-TC3. ... 19

Fig. 12(a) The new call blocking probability and (b) the active call
dropping probability without handoff mechanism. 22

Fig. 13 (a) The new call blocking probability, (b) the active call
dropping probability, and (c) the handoff frequency with
handoff mechanism... 23

Fig. 14 (a) The new call blocking probability, (b) the active call
dropping probability, and (c) the handoff frequency with
handoff mechanism... 25

 1

Chapter 1

Introduction
In recent years, the Internet has been widely deployed, and the number of Internet

hosts and users has been dramatically increased. Due to the constant growth of

transmission bandwidth, real-time applications, such as the Internet Telephony or

Voice Over Internet Protocol (VoIP), gradually become feasible on the Internet.

VoIP can bring us advantages like toll-by-pass, coexistence of voice and data

services, and easy deployment of telephony network between two branch offices. In

techniques, VoIP carries voice traffic as data packets over a packet-switched network,

instead of as a synchronous stream of binary sampled data over a circuit-switched,

time-division multiplexed (TDM) network.

To cope with this trend, the International Telecommunication Union (ITU) has

initiated various standardization activities (e.g. [1-3]) specifically on packet voice

transmission, where the most renowned one is perhaps the H.323. The H.323 defines

the components for real-time communication over packet networks, including

Gateways, Gatekeepers and Terminals. According to the standard, the Gateway is

responsible for real-time, two-way communication between the H.323 Terminals on

the LAN side and other Terminals on the Switched Circuit Network (SCN) side (e.g.,

PSTN), and it shall provide the appropriate translation for media formats and

communication procedures.

Through some experimental implementation on H.323 gateways, we found that

the computation load of a pure software-based H.323 gateway is mainly contributed

by media transformation activities, such as the transcoding of voice streams. We also

 2

observed that the CPU computation power of an IP call terminal (which is a PC in our

system setting) or a software-based H.323 gateway may be unevenly switched to

another task by the operation system; hence, an active IP call may experience

occasional interrupts. We therefore propose a proxy–transcoder (proxy-TC)

architecture to balance the computation load of, as well as to smooth the fluctuation of

dedicated computation powers to, the IP call activities. Our simulation showed that

both the system capacity and the new call blocking probability are significantly

improved under our proposed architecture. Besides, by adding an additional

TC-handoff mechanism, the active call dropping probability can be drastically

decreased at the expense of a little increase in the new call blocking probability.

 3

Chapter 2

Proxy-TC Architecture

2.1 Motivations

The system architectures of a PC-based H.323 gateway on the market can be

roughly divided into two categories. The first category incorporates separate powerful

modules, such as DSP-based add-on cards for medium transcoding, to achieve high

performance and stable communication quality, while the second category implements

the whole gateway functionality entirely on PC platform in order to provide a low

price solution to small businesses. One can then choose between these two types of

gateways to suit its need.

Nowadays, the Internet connection and the deployment of corporate network

almost become prerequisites for businesses. By installing the software-based gateway

onto an available PC on the existing network, a small office (e.g., with several people

work together but are separately located) can easily set up their inter-branch telephony

network without extra hardware cost. Although cost-effective, the telephony links

maintained by a software-based gateway at times suffer short interrupts due to the

possible uneven switching of PC platforms among several computation-bound tasks.

Moreover, the number of active calls is limited by the computation capability of the

gateway PC.

On the other hand, we observe that the computation powers of the desktop PCs in

use for general employees are sometimes not in full utilization. This leads us to the

idea of gathering these excessive computation powers to share the load of the

 4

software-based gateway, and hence, reduce the number of computation-bound tasks

on it. In such case, one may further increase the gateway capacity without introducing

additional hardware cost.

In order to comply with H.323, we propose to only transfer the load of the

transcoding operation to these office desktops with excessive computation powers,

which are named the proxy-transcoders (proxy-TC). By installing an agent, the

proxy-TC can perform the media format transformation, such as the encoding and

decoding of G.723.1, in the background under the monitor of its associated gateway.

The coded medium will then be sent to its call destination directly. Since the

excessive computation power of an employee's desktop may vary in a burst fashion

with time, a handoff-like mechanism to switch the job of a medium transcoding from

a proxy-TC to another is also proposed to cope with a sudden shortage of computation

power in a proxy-TC. Detailed command-exchange procedure that conforms to H.323

will be introduced in subsequent subsections.

The main advantage of our proposed H.323 compliant architecture is its

scalability, where the performance of a gateway can be easily enhanced by simply

adding one or more computers as its proxy-TCs. With these proxy-TCs, a powerful

software-based gateway can be established.

 5

2.2 System Architecture
The complete internetworking scenario is depicted in Fig. 1.

Fig. 1 The software-based gateway with proxy-TC architecture.

In our system setting, the software-based gateway, as shown in Fig. 1, composes

of a PC equipped with PSTN (or ISDN) and LAN cards and the Windows NT

operating system. The supported telephony protocols are PSTN telephony on the

PSTN side and H.323 on the LAN side.

On the Control Plane, the gateway performs the signaling protocol conversion. In

the scenario mentioned above, the control channels on the LAN side, which carry

H.225 call signaling and H.245 control signaling, are established between the gateway

and the H.323 endpoints involved in a call, and the control signaling messages are

directly exchanged between the gateway and the H.323 endpoints on the control

channels without being forwarded by the proxy-TC.

On the User Plane, the voice streams from the PSTN side may need to be

encoded using the standard codec algorithms (e.g. G.723.1 [4] or G.729 [5]), which

 6

are pre-negotiated through H.245 control signaling, and then be packetized for

transmission on the LAN side. In our proposed architecture, when the gateway is busy

upon a call arrival, the voice encoding will be performed by one of the proxy-TCs on

the LAN side. The proposed procedure is as follows.

First, the gateway finds an available proxy-TC that has enough CPU resource to

cooperate with through handshaking. And then the gateway reads the voice stream

from the telephony module in G.711 format, and paketizes and transmits them to the

proxy-TC for voice encoding. After the proxy-TC performs voice encoding, the

encoded voice stream are re-packetized and directly forwarded to the destined H.323

endpoint. In the converse direction, the voice stream, produced by the H.323 endpoint

and encoded in G.723 format, should be sent to the same proxy-TC for decoding into

G.711 format and then forwarded to the gateway after decoding. An alternative is to

let the H.323 endpoint directly send their voice stream to the gateway in G.711 format.

In such case, the bandwidth consumption of the external network, as shown in Fig. 1,

may be greatly increased. We justify the feasibility of using the 64Kbps G.711 voice

stream exchanged between proxy-TC and gateway as the bandwidth of the Ethernet at

LAN environment is now up to 100Mbps, and hence, the traffic load of the G.711

voice streams is endurable within the LAN.

In order to complete this scenario, a protocol between gateway and proxy-TC is

needed, which is defined as GW-TC signaling in this thesis and will be introduced

later.

 7

2.3 Proxy-Transcoder (Proxy-TC)

The structure of the proxy-TC is depicted in Fig. 2. The proxy-TC can be viewed

as a software component installed on a computer. Without ambiguity, we also refer the

computer equipped with this software component as a proxy-TC (since it is

meaningless to install two proxy-TC components in a PC). In our design, a computer

that is willing to donate its excessive computation power to gateway transcoding

activity should perform a web-registration process. Then a proxy-TC demon will be

downloaded onto the computer, and will be executed in background. The demon

consists of three parts: an Observer, a Controller and a Transcoder.

Fig. 2 The structure of a proxy-TC.

The Observer monitors local resource condition on the PC, such as available CPU

power, and periodically updates the information for use by Controller.

The Controller maintains the communication between the proxy-TC and its

associated gateway by using GW-TC signaling procedures. These control messages

include (1) informing the gateway that the proxy-TC is still active upon the request of

the proxy-TC’s associated gateway, (2) receiving the request of the transcoding

 8

service form the gateway, and (3) updating the information of CPU utilization.

The Transcoder is responsible for voice stream transcoding between different

speech coding algorithms, such as G.711, G.723.1 and G.729.

Another important task for the proxy-TC is to handle the RTP/RTCP protocols

[6-7] for the traffic sent between the proxy-TC and the destined H.323 endpoint. In

order to comply with the H.323 standardization, the proxy-TC only deals with the

RTP packets, but forwards the original RTCP packets between the H.323 endpoint and

the gateway.

2.4 The GW-TC signaling

The major goal of this GW-TC signaling is to enable the cooperation between the

gateway and the proxy-TCs. There are seven commands in the GW-TC signaling,

which are respectively described below:

Setup: This command is used by the gateway to request one of the proxy-TCs to

perform the transcoding service upon the occurrence of a new call.

Release: The gateway uses this command to release the transcoding service

either (1) upon the end of a call or (2) upon the receipt of the Emergency

command from the proxy-TC.

Register: The proxy-TCs send this command manually to the gateway (through

web-browsing activity) to register to the gateway so that the gateway can create

corresponding proxy-TC record.

Update: The proxy-TCs use this command to update their latest statuses kept on

the gateway.

 9

Emergency: This command is sent by the proxy-TCs to notify the gateway of

their (sudden) shortage of transcoding resources.

Query: If the update timer expires the gateway will send this command to

request the proxy-TC to update its status.

Acknowledge (ACK): This command may be sent by both the gateway and the

proxy-TCs to inform the other party that the previous command has been

successfully received. This command may also contain additional information,

such as, when a proxy-TC receives the Setup command from a gateway, the

proxy-TC should allocate two port numbers respectively for RTP and RTCP, and

these port numbers can be returned to the gateway in a piggyback fashion with

the Acknowledge command.

 10

2.5 GW-TC signaling procedure

Fig. 3 illustrates the procedure for a normal call setup that originates by the PSTN

side, and that is destined to an IP phone. In addition to the call procedure commands

defined in H.323, the gateway sends the Setup command to proxy-TC1 before

sending the H.245 commands. Proxy-TC1 then responses with an ACK command,

consisting of a pair of port numbers for RTP/RTCP that is used by proxy-TC1 for this

medium stream. Upon receipt of the H.245 OpenLogicalChannel command from the

H.323 endpoint, the gateway also obtained two port numbers respectively for

RTP/RTCP channels that are used on the H.323 endpoint; these pair of port numbers

will then be sent to proxy-TC1, again, using ACK command. One may view the

second ACK command as an acknowledgement to the previous ACK command from

proxy-TC1.

Fig. 3 A normal call setup procedure.

 11

The call clearing procedure, initiated by the PSTN side, is shown in Fig. 4. The

Release command is sent to the proxy-TC1 from the gateway after the gateway

completes the H.225 call clearing signaling. An ACK will be replied to indicate the

completeness of the resource releasing of the proxy-TC. In the end, the gateway will

complete the RAS call clearing procedure defined in H.323.

Fig. 4 A normal call clearing procedure.

 12

2.6 The handoff mechanism

As mentioned previously, the CPU usage in reality occasionally appears burstily.

So when the Observer on the proxy-TCs detects that the CPU resource is too low to

perform voice encoding, it will inform the gateway using the Emergence command,

and the gateway should find another proxy-TC to take over the call at once.

Fig. 5 shows the handoff procedure. The design of the handoff procedure is based

on the concept of the so-called soft handoff. When the gateway receives the

Emergency command from proxy-TC1, it handoffs the call to proxy-TC2.

Specifically, the gateway requests proxy-TC2 for transcoding service before it

releases the transcoding service of proxy-TC1. After proxy-TC2 successfully

establishes new logical channels, the transcoding service on proxy-TC1 is then

released.

Fig. 5 The handoff procedure.

 13

2.7 The error recovery procedure

To ensure the stability of the system, a proper design of an error recovery

procedure is necessary. Basically, our design incorporates the time-out mechanism to

cope with possible errors encountered in any normal procedure.

Fig. 6 shows the error recovery procedure during call setup. As shown in the

figure, the gateway tries to request proxy-TC1 for transcoding service by sending the

Setup command, but the ACK command is not received before the expiration of the

setup timer. As a result, the gateway turns to request proxy-TC2 for transcoding

service, and the setup procedure succeeds upon the receipt of the ACK command

from the proxy-TC2.

The emergency error recovery procedure is shown in Fig. 7. The upper portion of

Fig. 7 illustrates a normal emergency procedure while the lower portion of this figure

illustrates how the proxy-TC reacts when error occurs in this procedure. As shown in

the lower portion of the figure, proxy-TC1 sends the Emergency command to the

gateway, but does not receive the ACK command before the expiration of the

emergency timer. Because this procedure is time-sensitive, the emergency time-out

time should be kept short, for which we suggest to be less than 50ms or lower. When

not receiving the ACK command, proxy-TC1 repeats the sending of the Emergency

command until its successfully receiving the ACK command. At last, if the time

during which proxy-TC1 does not receive the ACK command while keep sending the

Emergency command exceeds a threshold, possibly 500ms or 1s, this procedure, as

well as the call, will be dropped.

As mentioned previously, the proxy-TCs should periodically update their latest

statuses to the gateway to keep the corresponding proxy-TC records up-to-date. Fig. 8

 14

shows some occasional situations of the update procedure. In our design, a proxy-TC

should constantly use the Update command to update its status, and the gateway

should trace this procedure by the update timer. At the moment of status updating, the

gateway resets the update timer (i.e., (1) and (3) of Fig. 8), if the timer expires the

gateway will send Query command to request the proxy-TC to update their status (i.e.,

(2) and (4) of Fig. 8). If the number of times of sending Query command without

response exceeds a certain threshold, the gateway will recognize this proxy-TC as

being shutdown, and remove it from the TC records. This update procedure is very

critical. It can let the gateway be aware whether the proxy-TC is active or not.

Fig. 9 shows the error recovery procedure for call release. This procedure is to

ensure that the proxy-TC has released the resources of transcoding services. The

gateway will keep sending the Release command until it receives the ACK command.

Fig. 6 The error recovery procedure for call setup.

 15

Fig.7 The error recovery procedure for call emergency

Fig. 8 The error recovery procedure for update procedure

 16

Fig. 9 The error recovery procedure for release procedure

2.8 Data structure.

To fulfill the procedures mentioned above, the gateway needs to maintain two

tables: the first one records the periodic update information of CPU utilization of each

proxy-TC, and the second one keeps the call information in the system. Also recorded

in the first table is the CPU maximum computation power that is measured by the

downloaded proxy-TC demon at the first time it is installed.

 17

Chapter 3

Simulation Model and Results
3.1 The simulation model

Our simulations involve up to three proxy-TCs as shown in Fig. 10. The

First-Fit-Round-Robin (FFRR) proxy-TC selection scheme is adopted.

We first measure the CPU utilization on four Pentium II 233 (PII 233) PCs,

which are respectively shown in Fig. 11. Based on these measurements, we find no

appropriate statistical models to fit their statistics. Hence, we will use these collected

data directly as our simulation inputs. We assume that both the call inter-arrival time

and the call duration are exponentially distributed, and the mean duration of each call

is three minutes.

 18

Fig. 10 Simulation Model

 19

(a) (b)

(c) (d)

Fig. 11 CPU utilization of (a) gateway (b) proxy-TC1 (c) proxy-TC2 (d) proxy-TC3.

 20

3.2 Performance indices

The definitions of blocked calls, dropped calls and handoff frequency are given

below. We recognize a call as a blocked call, when the individual CPU resources of

the gateway and all registered proxy-TCs are less than 25MIPS upon receipt of a new

call. A dropped call occurs when the serving proxy-TC is occasionally running out of

resources for at least one second and no other proxy-TC can take over this call.

Therefore, the new call blocking probability and the active call dropping probability

are:

[]

calls served Total
calls dropped ofNumber]Pr[

calls arrival Total
calls blocked ofNumber Pr

==

==

dropingP

blockingP

d

b

.

The handoff frequency is defined as:

calls served Total
calls handoff ofNumber]Pr[== HandoffPh .

 21

3.3 Simulation results

Fig. 12 shows the relation between the number of registered proxy-TCs and the

probabilities of call blocking and call dropping, when no handoff mechanism is

implemented. The first graph of Fig. 12 indicates that the new call blocking

probability drastically decrease as the number of proxy-TCs increases under the same

inter-arrival time, and as the number of the registered proxy-TCs reaches three, almost

no calls are blocked. On the other hand, Pb decreases exponentially with respect to the

inter-arrival time while the number of the registered proxy-TCs remains constant,

which can be easily justified from queuing analysis. As to the active call dropping

probability (Pd) plotted in (b) of Fig. 12, we observe that when the number of the

registered proxy-TCs is within one and two, Pd is approximately half of its original

quantity without proxy-TCs. However, when adding the third proxy-TC, we note that

Pd surprisingly increases instead of decreases. This is in fact due to that the CPU

utilization of the third proxy-TC is very much bursty in nature as shown in (d) of Fig.

11, and thereby a call being assigned to this proxy-TC suffers a high active call

dropping probability, which in turns increases the overall active call dropping

probability. We conclude that without handoff mechanism, Pd is highly dependent on

the statistical nature of the CPU utilization on individual registered proxy-TC.

The previous simulation hints the necessity of introducing a handoff mechanism

for maintaining a low Pd, which is substantiated by our second simulations shown in

Fig. 13.

In the second simulation, we presume that the number of registered proxy-TCs is

only one. We found that the handoff mechanism only slightly increases Pb when it is

compared to the situation without handoff mechanism. This result is anticipated since

 22

the handoff mechanism keeps most of the dropped calls in the previous simulation

alive, and hence, the available resource on the proxy-TC slightly decreases. The

goodness of introducing the handoff mechanism is that Pd is drastically decreased. In

short, the handoff mechanism can decrease a great amount of Pd at the expense of a

little increase in Pb.

Blocking Probability

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

30 50 70 90 110 130 150 170

Mean Interarrival Time (s)

P
ro

ba
bi

li
ty

 (
%

)

with 0 proxy-TC
with 1 proxy-TC
with 2 proxy-TC
with 3 proxy-TC

(a)

Dropping Probability

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

30 50 70 90 110 130 150 170

Mean Interarrival Time (s)

P
ro

ba
bi

li
ty

 (
%

)

with 0 proxy-TC
with 1 proxy-TC
with 2 proxy-TC
with 3 proxy-TC

(b)

Fig. 12(a) The new call blocking probability and (b) the active call dropping
probability without handoff mechanism.

 23

Blocking Probability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

30 50 70 90 110 130 150 170

Mean Interarrival Time (s)

Pr
ob

ab
ili

ty
 (

%
) No HO mechanism

With HO mechanism

(a)

Dropping Probability

0.00

1.00

2.00

3.00

4.00

5.00

6.00

30 50 70 90 110 130 150 170

Mean Interarrival Time (s)

Pr
ob

ab
ili

ty
 (

%
)

No HO mechanism

With HO mechanism

(b)

Handoff Frequency

4.00

4.20

4.40

4.60

4.80

5.00

5.20

5.40

5.60

30 50 70 90 110 130 150 170

Mean Interarrival Time (s)

R
el

at
iv

e
fre

qu
en

cy
 (

%
)

With HO mechenism

(c)

Fig. 13 (a) The new call blocking probability, (b) the active call dropping probability,
and (c) the handoff frequency with handoff mechanism.

 24

In the third simulation, we try to find another proxy-TC selection scheme to

reduce the handoff frequency while the FFRR is adopted in the first two simulations.

We propose the second scheme, maximum available resource (MAR), using this

scheme the gateway looks for the proxy-TC, which has the maximum available

resource among all proxy-TCs, to cooperate with. For evident distinction of result

between the two proxy-TC selection schemes, ten proxy-TCs are involved in this

simulation and the mean service time is extended to thirty minutes.

Fig. 14 shows the performances of the two proxy-TC selection schemes. From

the observation of (a) and (b) of Fig. 14, we find that Pb and Pd are independent of the

proxy-TC selection scheme when the handoff mechanism is adopted. The main

difference of performance is the handoff frequency as shown in (c) of Fig. 14. We can

easily recognize that the FFRR scheme performs better than the MAR scheme does

due to the lower handoff frequency. We investigate and find the reason, described

below. When the traffic load is higher and the MAR scheme is adopted, it is possible

that each proxy-TC will receive certain amounts of transcoding service loads of calls.

If there is a very busy proxy-TC, namely the CPU utilization of this proxy-TC is very

much bursty in nature. And thus this proxy-TC will handoffs all calls served by it to

other proxy-TCs more frequently. After finishing some job, the CPU utilization of this

busy proxy-TC will calm down in a short period of time and will be the one with

maximum available resource at some moment. When a new call arrivals, this call will

be assigned to this busy proxy-TC more likely and suffers higher handoff frequency.

But using FFRR, a new call will be assigned to every proxy-TC equally in probability

so that the handoff frequency will be lower.

This simulation tells us that a good method to predict the CPU utilization will

result in low handoff frequency and reduce the signaling traffic.

 25

Blocking Probability

0.00

10.00

20.00

30.00

40.00

50.00

2 6 10 14 18 22 26 30 34 38 42 46 50

Mean Interarrival Time (s)

Pr
ob

ab
ili

ty
 (

%
)

FFRR

MAR

(a)

Dropping Probability

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

2 6 10 14 18 22 26 30 34 38 42 46 50

Mean Interarrival Time (s)

Pr
ob

ab
ili

ty
 (

%
)

FFRR

MAR

(b)

Handoff Frequency

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

2 6 10 14 18 22 26 30 34 38 42 46 50

Mean Interarrival Time (s)

R
el

at
iv

e
fre

qu
en

cy
 (

%
) FFRR

MAR

(c)

Fig. 14 (a) The new call blocking probability, (b) the active call dropping probability,
and (c) the handoff frequency with handoff mechanism.

 26

Chapter 4

Conclusions and Future Work
In this thesis, we propose a novel architecture of a software-based gateway with

proxy-TCs operating on PC platforms. Simulation results show that it may provide a

cost-effective alternative for the gateway implementation. We summarize that the

proposed architecture achieves higher capacity and lower blocking probability with

respect to the arrival calls, and the employment of the handoff mechanism leads to a

drastic decrease in the active call dropping probability at the expense of a little

increase in the new call blocking probability. Along this research direction, an

interesting future work will be to find a method to predict the CPU utilization, as well

as a good call placement approach to reduce the handoff frequency.

 27

References
[1] ITU-T, Recommendation H.323, “Packet-based Multimedia Communication,”

Nov. 2000.

[2] ITU-T, Recommendation H.245 “Control Protocol for Multimedia
Communication,” Nov. 2000.

[3] ITU-T, Recommendation H.225.0, “Media Stream Packetization and
Synchronization on Non-Guaranteed Quality of Service LANs,” Mar. 2001.

[4] ITU-T, Recommendation G.723.1, “Dual Rate Speech Codec for Multimedia
Telecommunications Transmitting at 6.4 and 5.3 kbit/s,” Mar. 1996.

[5] ITU-T, Recommendation G.729, “Speech Codec for Multimedia
Telecommunications Transmitting at 8/13 kbit/s,” Mar. 1996.

[6] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A Transport
Protocol for Real-time Application,” IETF RFC 1889, 1996.

[7] A. M. Grilo, P. M. Carvalho, L. M. Medeiros and M. S. Nunes,
“VTOA/VoIP/ISDN Telephony Gateway,” in proceedings of ICATM '99, pp.
230-235, 1999.

[8] D. Rizzetto and C. Catania, “A Voice over IP Service Architecture for Integrated
Communication,” IEEE Network, vol. 13, pp. 34-40, May-June 1999.

[9] M. Hamdi, O. Verscheure, J.-P. Hubaux, I. Dalgic and P. Wang, “Voice Service
Interworking for PSTN and IP Networks,” IEEE Communications Magazine,
vol. 37, pp. 104-111, May 1999.

