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• Theory regarding to the communications among many (more than three) ter-

minals.

• This is usually named network.

Example 10.1 (multi-access channels)
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Example 10.2 (broadcast channel)

Example 10.3 (distributed detection)
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Distributed detection with n senders. Each observations Yi may come from one of

two categories. The final decision D ∈ {H0, H1}.
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Example 10.4 (some other examples)

1) Relay channel. This channel consists of one source sender, one destination

receiver, and several intermediate sender-receiver pairs that act as relays to fa-

cilitate the communication between the source sender and destination receiver.

2) Interference channel. Several senders and several receivers communicate simul-

taneously on common channel, where interference among them could introduce

degradation on performance.

3) Two-way communication channel. Instead of conventional one-way channel,

two terminals can communicate in a two-way fashion (full duplex).
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Definition 10.5 (independent encoders among distributed sources)

• There are several sources

X1, X2, . . . , Xm

(may or may not be independent) which are respectively obtained by m termi-

nals.

• Before each terminal transmits its local source to the receiver, a block encoder

fi with rate R1 and block length n is applied

fi : X n
i → {1, 2, . . . , 2nRi}.

• It is assumed that there is no conspiracy among block encoders.

Definition 10.6 (global decoder for independently compressed sources)

A global decoder g(·) will recover the original sources after receiving all the inde-

pendently compressed sources, i.e.,

g : {1, . . . , 2R1} × · · · × {1, . . . , 2Rm} → X n
1 × · · · × X n

m.
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Definition 10.7 (probability of error) The probability of error is defined as

Pe(n)
4
=Pr{g(f1(X

n
1 ), . . . , fm(Xn

m)) 6= (Xn
1 , . . . , Xn

m)}.

Definition 10.8 (achievable rates) A rates (R1, . . . , Rm) is said to be achiev-

able if there exists a sequence of block codes such that

lim sup
n→∞

Pe(n) = 0.

Definition 10.9 (achievable rate region for distributed sources) The

achievable rate region for distributed sources is the set of all achievable rates.

Observation 10.10 The achievable rate region is convex.
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Theorem 10.11 (Slepian-Wolf) For distributed sources consisting of two ran-

dom variables X1 and X2, the achievable region is

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 + R2 ≥ H(X1, X2).

Proof:

1. Achievability Part: We need to show that for any (R1, R2) satisfying the

constraint, a sequence of code pairs for X1 and X2 with asymptotically zero error

probability exists.

Step 1: Random coding.

Step 2: Error probability.

2. Converse Part: We have to prove that if a sequence of code pairs for X1 and

X2 has asymptotically zero error probability, then its rate pair (R1, R2) satisfies

the constraint.
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Corollary 10.12 Given sequences of several (correlated) discrete memoryless s-

ources X1, . . . , Xm which are obtained from different terminals (and are to be

encoded independently), the achievable code rate region satisfies

∑

i∈I
Ri ≥ H(XI |XL−I),

for any index set I ⊂ L
4
={1, 2, . . . , m}, where XI represents (Xi1, Xi2, . . .) for

{i1, i2, . . .} = I .

Example. m = 3.

R1 + R2 + R3 ≥ H(X1, X2, X3)

R1 + R2 ≥ H(X1, X2|X3)

R2 + R3 ≥ H(X2, X3|X1)

R3 + R1 ≥ H(X3, X1|X2)

R1 ≥ H(X1|X2, X3)

R2 ≥ H(X2|X1, X3)

R3 ≥ H(X3|X1, X2)
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• Full decoding versus Partial decoding.

– The receiver intends to fully reconstruct all the original information trans-

mitted, X1, . . . , Xm.

– The receiver may only want to reconstruct part of the original information,

say Xi for i ∈ I ⊂ {1, . . . , m} or XI .

• Since it is in general assumed that X1, . . . , Xm are dependent, the remaining

information, Xi for i 6∈ I , should be helpful in the re-construction of XI .

• Accordingly, these remain information are usually named the side information

for lossless data compression.

Definition 10.13 (reconstructed information and side information)

Let L
4
={1, 2, . . . , m} and I is any proper subset of L. Denote XI as the sources

Xi for i ∈ I , and similar notation is applied to XL−I .

In the data compression with side-information, XI is the information needs to

be re-constructed, and XL−I is the side-information.
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Definition 10.14 (independent encoders among distributed sources)

There are several sources X1, X2, . . . , Xm (may or may not be independent) which

are respectively obtained by m terminals. Before each terminal transmits its local

source to the receiver, a block encoder fi with rate Ri and block length n is applied

fi : X n
i → {1, 2, . . . , 2nRi}.

It is assumed that there is no conspiracy among block encoders.

Definition 10.15 (global decoder for independently compressed sources)

A global decoder g(·) will recover the original sources after receiving all the inde-

pendently compressed sources, i.e.,

g : {1, . . . , 2R1} × · · · × {1, . . . , 2Rm} → X n
I .

Definition 10.16 (probability of error) The probability of error is defined

as

Pe(n)
4
=Pr{g(fI(X

n
I ) 6= (Xn

I )}.

Definition 10.17 (achievable rates) A rates

(R1, . . . , Rm)

is said to be achievable if there exists a sequence of block codes such that

lim sup
n→∞

Pe(n) = 0.
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Definition 10.18 (achievable rate region for distributed sources) The

achievable rate region for distributed sources is the set of all achievable rates.

Observation 10.19 The achievable rate region is convex.

Theorem 10.20 For distributed sources with two random variable X1 and X2, let

X1 be the re-constructed information and X2 be the side information, the boundary

function R1(R2) for the achievable region is

R1(R2) ≥ min
{Z : X1→X2→Z and I(X2;Z)≤R2}

H(X1|Z)

• Interpretation.

R1 ≥ H(X1|Z) and R2 ≥ I(X2; Z),

for any X1 → X2 → Z.

• Z = the coding outputs of X2, received by the decoder, and is used by the

receiver as a side information to reconstruct X1.

• Hence, I(X2; Z) is the transmission rate from sender X2 to the receiver.

• For all f2(X2) = Z that has the same transmission rate I(X2; Z), the one that

minimize H(X1|Z) will yield the minimum compression rate for X1.
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• Motivations. Instead of re-construction of the original information, the de-

coder of a multiple sources system may only want to classify the sources into

one of finitely many categories. This problem is usually named distributed

detection.

Definition 10.21 (distributed system Sn) A distributed detection system

Sn, as depicted in Fig. 10.3, consists of n geographically dispersed sensors, noise-

less one-way communication links, and a fusion center. Each sensor makes an

observation (denoted by Yi) of a random source, quantizes Yi into an m-ary mes-

sage Ui = gi(Yi), and then transmits Ui to the fusion center. Upon receipt of

(U1, . . . , Un), the fusion center makes a global decision D (U1, . . . , Un) about the

nature of the random source.
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• The optimal design of Sn entails choosing quantizers g1, . . . , gn and a global

decision rule D so as to optimize a given performance index.

• Binary hypothesis testing under the (classical) Neyman-Pearson and Bayesian

formulations.

History.

• The joint optimization of entities g1, . . . , gn and D in Sn is a hard computa-

tional task, except in trivial cases (such as when the observations Yi lie in a set

of size no greater than m).

• It has been shown that whenever Y1, . . . , Yn are independent given each hypoth-

esis, an optimal solution can be found in which g1, . . . , gn are threshold-type

functions of the local likelihood ratio (possibly with some randomization for

Neyman-Pearson testing).

• Still, we should note that optimization of g1, . . . , gn over the class of threshold-

type likelihood-ratio quantizers is prohibitively complex when n is large.

Let us reduce the problem to the simplest statistics: i.i.d.

Question: whether a symmetric optimal solution exists in which the quantizers gi

are identical?
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• If so, then the optimal system design is considerably simplified.

• The answer is negative in general.

The general problem is as follows.

• System Sn is used for testing H0 : P versus H1 : Q, where P and Q are

one-dimensional marginals of the i.i.d. data Y1, . . . , Yn.

• As n tends to infinity, both the minimum type II error probability β∗
n(α) (as

function of the type I error probability bound α) and the Bayes error probability

γ∗
n(π) (as function of the prior probability π of H0) vanish at an exponential

rate.

• It thus becomes legitimate to adopt a measure of asymptotic performance based

on the error exponents

e∗NP(α)
4
= lim

n→∞
−

1

n
log β∗

n(α)

e∗B(π)
4
= lim

n→∞
−

1

n
log γ∗

n(π) .

• It was shown by Tsitsiklis that, under certain assumptions on the hypotheses

P and Q, it is possible to achieve the same error exponents using identical

quantizers.
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• Thus if β�
n(α), γ�

n(π), e�NP(α) and e�B(π) are the counterparts of β∗
n(α), γ∗

n(π),

e∗NP(α) and e∗B(π) under the constraint that the quantizers g1, . . . , gn are iden-

tical, then

(∀α ∈ (0, 1)) e�NP(α) = e∗NP(α)

and

(∀π ∈ (0, 1)) e�B(π) = e∗B(π) .

(Of course, for all n, β�
n(α) ≥ β∗

n(α) and γ�
n(π) ≥ γ∗

n(π).)

• This result provides some justification for restricting attention to identical quan-

tizers when designing a system consisting of a large number of sensors.

Here we will focus on two issues.

• The first issue is the exact asymptotics of the minimum error probabilities

achieved by the absolutely optimal and best identical-quantizer systems.

• the ratio γ∗
n(π)/γ�

n(π).

– Note that equality in the error exponents of γ∗
n(π) and γ�

n(π) does not in

itself guarantee that for any given n, the values of γ∗
n(π) and γ�

n(π) are in

any sense close.
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Definition 10.25 (divergence) The (Kullback-Leibler, informational) diverg-

ence, or relative entropy, of P relative to Q is defined by

D(P‖Q)
4
=EP [X ] =

∫

log
dP

dQ
(y) dP (y) .

Lemma 10.27 (Neyman-Pearson type II error exponent of fixed test

level) The optimal Neyman-Pearson error exponent in testing P versus Q at any

level α ∈ (0, 1) based on the i.i.d. observations Y1, . . . , Yn is D(P‖Q).

Definition 10.28 (moment generation function of log-likelihood ra-

tio) Ψ(θ) is the moment generation function of X under Q:

Ψ(θ)
4
=EQ[exp{θX}] =

∫





dP

dQ
(y)





θ

dQ(y) .

Lemma 10.29 (concavity of Ψ(θ))

1. For fixed θ ∈ [0, 1], Ψ(θ) is a finite-valued concave functionals of the pair (P, Q)

with the property P ≡ Q.

2. For fixed (P, Q) with P ≡ Q, Ψ(θ) is finite and convex in θ ∈ [0, 1].

This last property, together with the fact that Ψ(0) = Ψ(1) = 1, guarantees that

Ψ(θ) has a minimum value which is less than or equal to unity, achieved by some

θ∗ ∈ (0, 1).
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Definition 10.30 (Chernoff exponent) We define the Chernoff exponent

ρ(P, Q)
4
= − log Ψ(θ∗) = − log



 min
θ∈(0,1)

Ψ(θ)



 .

Lemma 10.31 The Chernoff exponent coincides with the Bayes error exponent.

Example 10.32 (counterexample to γ∗
n(π)/γ�

n(π) →1) Consider a ternary

observation space Y = {a1, a2, a3} with binary quantization. The two hypotheses

are assumed equally likely, with

y a1 a2 a3

P (y) 1/12 1/4 2/3

Q(y) 1/3 1/3 1/3

(dP/dQ)(y) 1/4 3/4 2

There are only two nontrivial deterministic LRQ’s: ĝ, which partitions Y into

{a1} and {a2, a3}; and ḡ, which partitions Y into {a1, a2} and {a3}.

lim sup
k→∞

γ∗
2k(1/2)

γ�
2k(1/2)

≤
23

24
.
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Assumption 10.33 (boundedness assumption) There exists δ ≥ 0 for which

sup
g∈Gm

EP [|Xg|
2+δ] < ∞, (10.2.5)

where Gm is the set of all possible m-ary quantizers.

Theorem 10.34 The boundedness assumption is equivalent to

lim sup
t→∞

EP [|Xτt|
2+δ] < ∞ , (10.2.6)

where τt is defined as

τt
4
=((−∞, t] , (t,∞)). (10.2.7)

We now distinguish between three cases.

Case A. lim sup
t→∞

EP [Xτt] = ∞ .

Case B. 0 < lim sup
t→∞

EP [Xτt] < ∞ .

Case C. lim sup
t→∞

EP [Xτt] = 0 and lim sup
t→∞

EP [X2
τt
] = ∞ .
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Example Let the observation space be the unit interval (0, 1] with its Borel field.

For a > 0, define the distributions P and Q by

P{Y ≤ y} = y , Q{Y ≤ y} = exp







a + 1

a



1 −
1

ya











.

The pdf of Q is strictly increasing in y, and thus the likelihood ratio (dP/dQ)(y) is

strictly decreasing in y. Hence the event {X > t} can also be written as {Y < yt},

where yt → 0 as t → ∞. Using this equivalence, we can examine the limiting

behavior of EP [Xτt] and EP [X2
τt
] to obtain:

a. a > 1 : limt→∞ EP [Xτt] = limt→∞ EP [X2
τt
] = ∞ (Case A)

b. a = 1 : limt→∞ EP [Xτt] = 2, limt→∞ EP [X2
τt
] = ∞ (Case B)

c. 1/2 < a < 1 : limt→∞ EP [Xτt] = 0, limt→∞ EP [X2
τt
] = ∞ (Case C)

d. a ≤ 1/2 : limt→∞ EP [X2
τt
] < ∞ (Assumption 10.33 is satisfied) .
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Theorem 10.37 (result for Case A) If lim supt→∞ EP [Xτt] = ∞, then for

all m ≥ 2 and α ∈ (0, 1),

e∗NP(α) = e�NP(α) = ∞ .
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Theorem 10.38 (result for Case B) Consider hypothesis testing with m-ary

quantization, where m ≥ 2. If

0 < lim sup
t→∞

EP [Xτt] < ∞ , (10.2.11)

then there exist:

1. an increasing sequence of integers {nk, k ∈ N} and a function L : (0, 1) 7→

(0,∞) which is monotonically increasing to infinity, such that

lim inf
k→∞

−
1

nk
log β�

nk
(α) ≥ L(α) ∨ Dm ;

2. a function M : (0, 1) 7→ (0,∞) which is monotonically increasing to infinity

and is such that

lim sup
n→∞

−
1

n
log β∗

n(α) ≤ M(α)

where

L(α)
4
=

lim sup
t→∞

EP [Xτt]

log(1/α)
and M(α)

4
=

sup
g∈Gm

EP [|Xg|]

1 − α
.
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0 1
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NP

(α)

Dm
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Upper and lower bounds on e∗NP(α) in Case B.
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Theorem 10.39 (result for Case C) In Case C,

e∗NP(α) = e�NP(α) = D(P‖Q).

Theorem 10.40 (result under boundedness assumption) Let δ ≤ 1 sat-

isfy (10.2.5). If α ≤ 1/2, or if α > 1/2 and observation space Y is finite, then

β∗
n(α)

β�
n(α)

≥ exp{−c′(δ, α)n
1−δ
2 } .

In particular, if (10.2.5) holds for δ ≥ 1, then the ratio β∗
n(α)/β�

n(α) is bounded

from below.
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Theorem 10.41 In Bayes testing with m-ary quantization,

lim inf
n→∞

γ∗
n(π)

γ�
n(π)

> 0 (10.2.13)

for all π ∈ (0, 1).
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Definition 10.42 (discrete memoryless multiple access channel) A dis-

crete memoryless multiple access channel contains several senders

(X1, X2, . . . , Xm)

and one receiver Y , which are respectively defined over finite alphabet (X1,X2,. . .)

and Y . Also given is the transition probability PY |X1,X2,...,Xm
.

For simplicity, we will focus on the system with only two senders. The block

code for this simple multiple access channel is defined below.

Definition 10.43 (block code for multiple access channels) A block code

(n, M1M2)

for multiple access channel has block length n and rates R1 = (1/n) log2 M1 and

R2 = (1/n) log2 M2 respectively for each sender as:

f1 : {1, . . . , M1} → X n
1 ,

and

f2 : {1, . . . , M2} → X n
2 .

Upon receipt of the channel output, the decoder is a mapping

g : Yn → {1, . . . , M1} × {1, . . . , M2}.
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Theorem 10.44 (capacity region of memoryless multiple access chan-

nel) The capacity region for memoryless multiple access channel is the convex set

of the set
{

(R1, R2) ∈ (<+ ∪ {0})2 : R1 ≤ I(X1; Y |X2), R2 ≤ I(X2; Y |X1)

and R1 + R2 ≤ I(X1, X2; Y )} .
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Definition 10.45 (broadcast channel) A broadcast channel consists of one

input alphabet X and two (or more) output alphabets Y1 and Y2. The noise is

defined by the conditional probability PY1,Y2|X(y1, y2|x).

Example 10.46 Examples of broadcast channels are

• Cable Television (CATV) network;

• Lecturer in classroom;

• Code Division Multiple Access channels.

Definition 10.47 (degraded broadcast channel) A broadcast channel is said

to be degraded if

PY1,Y2|X(y1, y2|x) = PY1|X(y1|x)PY2|Y1
(y2|y1).

It can be verified that when X → Y1 → Y2 forms a Markov chain, in which

PY2|Y1,X(y2|y1, x) = PY2|Y1
(y2|y1), a degraded broadcast channel is resulted. This

indicates that the “parallelly” broadcast channel degrades to a “serially” broadcast

channel, where the channel output Y2 can only obtain information from channel

input X through the previous channel output Y1.
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Definition 10.48 (block code for broadcast channel) A block code for

broadcast channel consists of one encoder f(·) and two (or more) decoders {gi(·)}

as

f : {1, . . . , 2nR1} × {1, . . . , 2nR2} → X n,

and

g1 : X n → {1, . . . , 2nR1},

g2 : X n → {1, . . . , 2nR2}.

Definition 10.49 (error probability) Let the source index random variable

be W1 and W2, namely W1 ∈ {1, . . . , 2nR1} and W2 ∈ {1, . . . , 2nR2}. Then the

probability of error is defined as

Pe
4
=Pr{W1 6= g1[f(W1, W2)] or W2 6= g2[f(W1, W2)]}.

Theorem 10.50 (capacity region for degraded broadcast channel)

The capacity region for memoryless degraded broadcast channel is the convex set

of
⋃

U
{(R1, R2) : R1 ≤ I(X ; Y1|U) and R2 ≤ I(U ; Y2)} ,

where the union is taking over all U satisfying U → X → Y1Y2 with alphabet size

|U| ≤ min{|X |, |Y1|, |Y2|}.
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Example 10.51 (capacity region for degraded BSC) Suppose PY1|X and

PY2|Y1
are BSC with crossover ε1 and ε2, respectively. Then the capacity region can

be parameterized through β as:

R1 ≤ hb(β × ε1) − hb(ε1)

R2 ≤ 1 − hb(β × (ε1(1 − ε2) + (1 − ε1)ε2)),

where PX|U(0|1) = PX|U(1|0) = β and U ∈ {0, 1}.

Example 10.52 (capacity region for degraded AWGN channel) The

channel is modeled as

Y1 = X + N1 and Y2 = Y1 + N2,

where the noise power for N1 and N2 are σ2
1 and σ2

2, respectively. Then the capacity

region for input power constraint S should satisfy

R1 ≤
1

2
log2



1 +
αS

σ2
1





R2 ≤
1

2
log2





1 +
(1 − α)S

αS + σ2
1 + σ2

2





 ,

for any α ∈ [0, 1].
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The encoder now becomes

f1 : < → <

f2 : < → <
...

fm : < → <

So we have now m (independent) transmitters, and one receiver in the system.

The system can be modeled as

Y =
m
∑

i=1
Xi + N.

Theorem 10.53 (capacity region for AWGN multiple access channel)

Suppose each transmitter has (constant) power constraint Si. Let I denote the

subset of {1, 2, . . . , m}. Then the capacity region should be






(R1, . . . , Rm) : (∀ I)
∑

i∈I
Ri ≤

1

2
log2



1 +
∑

i∈I Si

σ2











,

where σ2 is the noise power of N .


