Chapter 7

Lossy Data Compression

Po-Ning Chen

Department of Communications Engineering

National Chiao-Tung University

Hsin Chu, Taiwan 30050

codewords of length n, where each codeword is a sequence of n reproducing letters blocklength n and size M is a mapping $f_n(\cdot): \mathbb{Z}^n \to \mathbb{Z}^n$ that results in $||f_n|| = M$ bet \mathcal{Z} and a finite reproduction alphabet \mathcal{Z} , a block code for data compression of Definition 7.1 (lossy compression block code) Given a finite source alpha-

ping **Definition 7.2 (distortion measure)** A distortion measure $\rho_n(\cdot,\cdot)$ is a map-

$$\rho_n : \mathcal{Z}^n \times \hat{\mathcal{Z}}^n \to \Re^{+\frac{\triangle}{=}}[0, \infty).$$

by a reproduction *n*-tuple $f_n(z^n)$. We can view the distortion measure as the cost of representing a source n-tuple z^n

given. The distortion inf-spectrum $\underline{\lambda}_{\mathbf{Z},\hat{\mathbf{Z}}}(\theta)$ is defined by Definition 7.3 (distortion inf-spectrum) Let (Z, \hat{Z}) and $\{\rho_n(\cdot, \cdot)\}_{n\geq 1}$ be

$$\underline{\lambda}_{Z,\hat{Z}}(\theta) \stackrel{\triangle}{=} \lim_{n \to \infty} \inf Pr \left\{ \frac{1}{n} \rho_n(Z^n, \hat{Z}^n) \le \theta \right\}.$$

f) Let Z and $\{\rho_n(\cdot,\cdot)\}_{n\geq 1}$ be given. Let $f(\cdot)\stackrel{\triangle}{=} \{f_n(\cdot)\}_{n=1}^{\infty}$ denote a sequence of (lossy) data compression codes. The distortion inf-spectrum $\underline{\lambda}_{\mathbf{Z},f(\mathbf{Z})}(\theta)$ for $f(\cdot)$ Definition 7.4 (distortion inf-spectrum for lossy compression code

General lossy source compression for block codes

II:7-2

is defined by

$$\underline{\lambda}_{\mathbf{Z},\mathbf{f}(\mathbf{Z})}(\theta) \stackrel{\triangle}{=} \lim \inf_{n \to \infty} Pr \left\{ \frac{1}{n} \rho_n(Z^n, f_n(Z^n)) \le \theta \right\}.$$

codes $f_n(\cdot)$ with rate at distortion D for a source Z if there exists a sequence of data compression **Definition 7.5** Fix D > 0 and $1 > \varepsilon > 0$. R is a ε -achievable data compression

$$\limsup_{n \to \infty} \frac{1}{n} \log \|f_n\| \le R,$$

$$\limsup_{n \to \infty} \frac{-\log ||J_n|| \le \kappa,}{n}$$

$$\sup \left[\theta : \underline{\lambda}_{\mathbf{Z}, f(\mathbf{Z})}(\theta) \le \varepsilon\right] \le D.$$

- Note that (7.1.1) is equivalent to stating that the limsup of the probability of excessive distortion (i.e., distortion larger than D) is smaller than $1-\varepsilon$.
- The infimum ε -achievable data compression rate at distortion D for \mathbf{Z} is denoted by $T_{\varepsilon}(D, \mathbf{Z})$.

 $\varepsilon > 0$. Let **Z** and $\{\rho_n(\cdot, \cdot)\}_{n \ge 1}$ be given. Theorem 7.6 (general data compression theorem) Fix D > 0 and 1 > 0

$$R_{\varepsilon}(D) \le T_{\varepsilon}(D, \mathbf{Z}) \le R_{\varepsilon}(D - \gamma),$$

for any $\gamma > 0$, where

$$R_{\varepsilon}(D) \stackrel{\triangle}{=} \left\{ P_{\hat{\mathbf{Z}}|\mathbf{Z}} : \sup \left[\theta : \underline{\lambda}_{\mathbf{Z},\hat{\mathbf{Z}}}(\theta) \leq \varepsilon \right] \leq D \right\}^{\bar{I}}(\mathbf{Z};\hat{\mathbf{Z}}),$$

joint distribution $P_{Z,\hat{Z}} = P_Z P_{Z|\hat{Z}}$ satisfies the distortion constraint where the infimum is taken over all conditional distributions $P_{\mathbf{Z}|\hat{\mathbf{Z}}}$ for which the

• Probability-of-error distortion measure $\rho_n: \mathbb{Z}^n \to \mathbb{Z}^n$:

$$\rho_n(z^n, \tilde{z}^n) = \begin{cases} n, & \text{if } z^n \neq \tilde{z}^n; \\ 0, & \text{otherwise.} \end{cases}$$

We define a data compression code $f_n: \mathbb{Z}^n \to \mathbb{Z}^n$ based on a chosen (asymptotic) lossless fixed-length data compression code book $\mathcal{L}_n \subset \mathcal{Z}^n$:

$$f_n(z^n) = \begin{cases} z^n, & \text{if } z^n \in \mathcal{C}_n; \\ \underline{0}, & \text{if } z^n \notin \mathcal{C}_n, \end{cases}$$

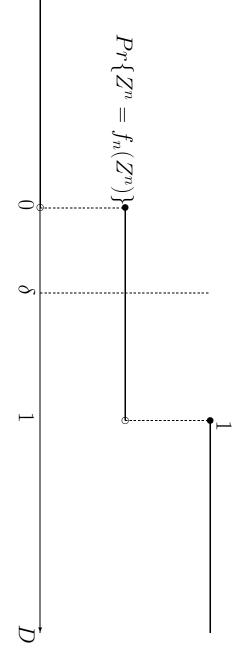
where $\underline{0}$ is some default element in \mathbb{Z}^n .

- Then $(1/n)\rho_n(z^n, f_n(z^n))$ is either 1 or 0 which results in a cumulative distribution function as shown in Figure 7.2
- Consequently, for any $\delta \in [0, 1)$

$$Pr\left\{\frac{1}{n}\rho_n(Z^n, f_n(Z^n)) \le \delta\right\} = Pr\left\{Z^n = f_n(Z^n)\right\}.$$

<u>Example</u>

II:7-6



The CDF of $(1/n)\rho_n(Z^n, f_n(Z^n))$ for the probability-of-error distortion measure.

By comparing the (asymptotic) lossless and lossy fixed-length compression theorems under the probability-of-error distortion measure, we observe that

$$R_{\varepsilon}(\delta) = \begin{cases} P_{\hat{\boldsymbol{Z}}|\boldsymbol{Z}} : \sup[\theta : \dot{\boldsymbol{\lambda}}_{\boldsymbol{Z},\hat{\boldsymbol{Z}}}(\theta) \leq \varepsilon] \leq \delta \end{cases}^{\bar{I}}(\boldsymbol{Z};\hat{\boldsymbol{Z}})$$

$$= \begin{cases} 0, & \text{inf} \\ \{P_{\hat{\boldsymbol{Z}}|\boldsymbol{Z}} : \liminf_{n \to \infty} Pr\{Z^n = \hat{\boldsymbol{Z}}^n\} > \varepsilon \} \end{cases}^{\bar{I}}(\boldsymbol{Z};\hat{\boldsymbol{Z}}), \quad \delta \geq 1;$$

$$= \begin{cases} 0, & \text{inf} \\ 0, & \text{inf} \end{cases}$$

$$= \begin{cases} 0, & \delta \geq 1; \\ \{P_{\hat{\boldsymbol{Z}}|\boldsymbol{Z}} : \limsup_{n \to \infty} Pr\{Z^n \neq \hat{\boldsymbol{Z}}^n\} \leq 1 - \varepsilon \} \end{cases}^{\bar{I}}(\boldsymbol{Z};\hat{\boldsymbol{Z}}), \quad \delta < 1;$$

WHEIE

$$\underline{\lambda}_{Z,\hat{Z}}(\theta) = \begin{cases} \liminf_{n \to \infty} Pr \left\{ Z^n = \hat{Z}^n \right\}, & 0 \le \theta < 1; \\ 1, & \theta \ge 1. \end{cases}$$

• In particular, in the extreme case where ε goes to one,

$$ar{H}(oldsymbol{Z}) = \inf_{egin{subarray}{c} ar{P}_{oldsymbol{Z}|oldsymbol{Z}} : \limsup_{n o \infty} Pr\{Z^n
eq \hat{Z}^n\} = 0\} \end{bmatrix} ar{I}(oldsymbol{Z}; \hat{oldsymbol{Z}}).$$

<u>Example</u>

II:7-8

• Therefore, in this case, the data compression theorem reduces (as expected) to the asymptotic lossless fixed-length data compression theorem.