2004 Spring Midterm for Information Theory

1. (10 pt) A uniquely decodable variable-length code with binary code alphabet $\{0,1\}$ and with 6 codewords having lengths $\ell_0, \ell_1, \ell_2, \ell_3, \ell_4, \ell_5$. Give an example of Huffman coding that equates the Kraft inequality, i.e., $\sum_{m=0}^{6} 2^{-\ell_m} = 1$.

(Note: You need to specify the probabilities of each of the 6 outcomes, which results in a Huffman code that equates the Kraft inequality.)

(Hint: Binary tree.)

Answers: Code $\{0, 10, 110, 1110, 11110, 11111\}$ for probabilities, 1/2, 1/4, 1/8, 1/16, 1/32, 1/32.

- 2. (a) (10 pt) For channel input X^n and channel output Y^n with joint distribution P_{X^n,Y^n} , write down the joint δ -typical set for this discrete memoryless channel. (Hint: Suppose P_{X^n,Y^n} is the joint distribution that achieves the channel capacity.)
 - (b) (10 pt) For a given channel code $\mathcal{C} \triangleq \{c_1, c_2, \dots, c_M\}$, specify the typical-set-based decoder used in the proof of Shannon's channel coding forward theorem in text.

Answers: See slides I:4-14 and I:4-15.

3. (10 pt)(Fano's inequality) Let X and Y be two random variables, correlated in general, with values in \mathcal{X} and \mathcal{Y} , respectively, where \mathcal{X} is finite but \mathcal{Y} can be an infinite set. Let $\hat{x} \triangleq g(y)$ be an estimate of x from observing y. Define the probability of estimating error as

$$P_e \triangleq \Pr \{g(Y) \neq X\}$$
.

Then for any estimating function $g(\cdot)$,

$$H_b(P_e) + P_e \cdot \log(|\mathcal{X}| - 1) \ge H(X|Y),$$

where $H_b(t) \triangleq -t \cdot \log t - (1-t) \cdot \log(1-t)$ is the binary entropy function.

Answer: See slide I:4-28. □

4. (10 pt) Prove that the channel capacity of the binary-input-binary-output Z-channel is equal to:

$$C = H_b \left(\frac{1}{1 + e^{H_b(\epsilon)/\epsilon}} \right) - \frac{1}{\epsilon (1 + e^{H_b(\epsilon)/\epsilon})} \cdot H_b(\epsilon) \text{ nats/channel usage}$$

where $\Pr\{Y = 0 | X = 0\} = 1$ and $\Pr\{Y = 1 | X = 1\} = \epsilon \in (0, 1)$.

(Hint: Let $p = \Pr\{X = 1\}$. Compute I(X;Y) in terms of H(Y) - H(Y|X). Use $\partial H_b(x)/\partial x = \log((1-x)/x)$ to obtain the input distribution that maximizes the mutual information, where $H_b(x) = -x \log(x) - (1-x) \log(1-x)$.)

Answers: $H(Y|X) = (1-p)H(Y|X=0) + pH(Y|X=1) = p \cdot H_b(\epsilon)$ nats. So, $I(X;Y) = H(Y) - H(Y|X) = H(Y) - p \cdot H_b(\epsilon) = H_b(p\epsilon) - p \cdot H_b(\epsilon)$ nats. This gives that

$$\frac{\partial I(X;Y)}{\partial p} = \epsilon \log \frac{1 - p\epsilon}{p\epsilon} - H_b(\epsilon).$$

By letting $\partial I(X;Y)/\partial p=0$, we obtain

$$p^* = \frac{1}{\epsilon (1 + e^{H_b(\epsilon)/\epsilon})}.$$

Therefore,

$$C = H_b \left(\frac{1}{1 + e^{H_b(\epsilon)/\epsilon}} \right) - \frac{1}{\epsilon (1 + e^{H_b(\epsilon)/\epsilon})} \cdot H_b(\epsilon) \text{nats/channel usage.}$$

- 5. (a) (10 pt) Derive the differential entropy of a source Y with $c \cdot e^{-c|y|}/2$ for $y \in \Re$.
 - (b) (10 pt) Prove that the source Y with pdf $c \cdot e^{-c|y|}/2$ for $y \in \Re$ has the largest differential entropy among all sources with the same support (i.e., \Re) and the same first absolute moment (i.e., E[|Y|]).

Answers:

(a)

$$\int_{\Re} \frac{c}{2} e^{-c|y|} \left[-\log \frac{c}{2} + c|y| \right] dy = -\log \frac{c}{2} + cE[|Y|]$$

$$= 1 + \log(2) - \log(c).$$

(b) Let $p(\cdot)$ be the pdf of a continuous source X with support \Re and E[|X|] = E[|Y|]. Let $\phi(y) = ce^{-c|y|}/2$. Observe that

$$-\int_{\Re} \phi(y) \log \phi(y) dy = \int_{\Re} \phi(y) \left[-\log \frac{c}{2} + c|y| \right] dy$$

$$= -\log \frac{c}{2} + cE[|Y|]$$

$$= -\log \frac{c}{2} + cE[|X|]$$

$$= \int_{\Re} p(x) \left[-\log \frac{c}{2} + c|x| \right] dx$$

$$= -\int_{\Re} p(x) \log \phi(x) dx.$$

Hence,

$$h(Y) - h(X) = -\int_{\Re} \phi(y) \log \phi(y) dy + \int_{\Re} p(x) \log p(x) dx$$

$$= -\int_{\Re} p(x) \log \phi(x) dx + \int_{\Re} p(x) \log p(x) dx$$

$$= \int_{\Re} p(x) \log \frac{p(x)}{\phi(x)} dx$$

$$\geq \int_{\Re} p(x) \left(1 - \frac{\phi(x)}{p(x)}\right) dx \quad \text{(fundamental inequality)}$$

$$= \int_{\Re} (p(x) - \phi(x)) dx$$

$$= 0,$$

with equality holds if, and only if, $p(x) = \phi(x)$ for all $x \in \Re$.

6. (20 pt) Assume that the two memoryless BSC channels below are independent. Determine the maximum reliable transmission rates respectively for the following two systems, in which System B allows an intermediate re-coding to help improving the system performance.

(Hint: The channel capacity of BSC(ϵ) is given by $1 - H_b(\epsilon)$ bits/channel usage, where $H_b(\epsilon) = -\epsilon \log_2 \epsilon - (1 - \epsilon) \log_2 (1 - \epsilon)$ is the binary entropy function.)

Answers: For System A, the concatenation of BSC(ϵ_1) and BSC(ϵ_2) becomes BSC($(1-\epsilon_1)\epsilon_2+(1-\epsilon_2)\epsilon_1$). So, by Shannon's channel coding theorem, the maximum reliable transmission rate is $1-H_b((1-\epsilon_1)\epsilon_2+(1-\epsilon_2)\epsilon_1)$ bits/channel usage.

For System B, $P_{\text{error,SystemB}} = 1 - (1 - P_{\text{error,Decoder1}})(1 - P_{\text{error,Decoder2}})$. Hence, $P_{\text{error,SystemB}}$ can be made arbitrarily small, if both $P_{\text{error,Decoder1}}$ and $P_{\text{error,Decoder2}}$ can be made arbitrarily small. Also, $P_{\text{error,SystemB}}$ is bounded away from zero, if $P_{\text{error,Decoder1}}$ or $P_{\text{error,Decoder2}}$ is bounded away from zero. Consequently, the maximum reliable transmission rate is given by $\min\{1 - H_b(\epsilon_1), 1 - H_b(\epsilon_2)\}$ bits/channel usage.

7. (10 pt) Below is a bandlimited waveform channel, where

$$H(f) = \begin{cases} \frac{1}{\sqrt{2W}}, & \text{for } -W \text{ (Hertz)} < f < W \text{ (Hertz)}; \\ 0, & \text{otherwise.} \end{cases}$$

Assume that W_sT is an integer.

Now suppose $X_t = 0$ for every t and N_t is a white noise, find the condition (i.e., the relation between W and W_s) under which Y_{i/W_s} and Y_{j/W_s} are uncorrelated for every $i \neq j$.

Answers:

In this case, $Y_t = N_t * H(t)$.

$$\begin{split} E[Y_{i/W_s}Y_{j/W_s}] &= E\left[\left(\int_{\Re} h(\tau)N_{(i/W_s)-\tau}d\tau\right)\left(\int_{\Re} h(\tau')N_{(j/W_s)-\tau'}d\tau'\right)\right] \\ &= \int_{\Re} \int_{\Re} h(\tau)h(\tau')E\left[N_{(i/W_s)-\tau}N_{(j/W_s)-\tau'}\right]d\tau'd\tau \\ &= \int_{\Re} \int_{\Re} h(\tau)h(\tau')\frac{N_0}{2}\delta\left(\frac{i}{W_s} - \frac{j}{W_s} - \tau + \tau'\right)d\tau'd\tau \\ &= \frac{N_0}{2} \int_{\Re} h(\tau)h(\tau - (i-j)/W_s)d\tau \\ &= \frac{N_0}{4W} \int_{-W}^{W} \int_{-W}^{W} \left(\int_{\Re} e^{j2\pi f\tau}df\right)\left(\int_{-W}^{W} \frac{1}{\sqrt{2W}}e^{j2\pi f'(\tau - (i-j)/W_s)}df'\right)d\tau \\ &= \frac{N_0}{4W} \int_{-W}^{W} \int_{-W}^{W} \left(\int_{\Re} e^{j2\pi (f+f')\tau}d\tau\right)e^{-j2\pi f'(i-j)/W_s}df'df \\ &= \frac{N_0}{4W} \int_{-W}^{W} \delta(f+f')e^{-j2\pi f'(i-j)/W_s}df'df \\ &= \frac{N_0}{4W} \int_{-W}^{W} e^{j2\pi f(i-j)/W_s}df \\ &= \frac{N_0}{2} \frac{\sin(2\pi W(i-j)/W_s)}{2\pi W(i-j)/W_s} \\ &= \begin{cases} N_0/2, & \text{if } i=j; \\ \frac{N_0}{2} \frac{\sin(2\pi W(i-j)/W_s)}{2\pi W(i-j)/W_s}, & \text{if } i\neq j. \end{cases} \end{split}$$

Hence, it requires that for any $i \neq j$, $(W/W_s)(i-j) = k/2$ for some $k = \pm 1, \pm 2, \pm 3, \ldots$, which is implied by " $W/W_s = k/2$ for some $k = 1, 2, 3, \ldots$ " (or equivalently, $W_s = 2W/k$ for some $k = 1, 2, 3, \ldots$).