On Deterministic Traffic Regulation and Service Guarantees : A Systematic Approach by Filtering

IEEE Transactions on Information Theory Vol. 44, pp. 1097-1110, May 1998

Reporter:Tsung-Ray Wang 8913536

NCTU Communication Engineering

Abstract

- 1.A filtering theory for deterministic traffic regulation and service guarantees under the(min,+)-algebra
- 2.Traffic regulators that generate f -upper constrained outputs can be implemented optimally by a linear time invariant filter with the impulse response f^* under the (min,+)-algebra, where f^* is the subadditive closure
- Analogous to the classical filtering theory, there is an associate calculus, including feedback, concatenation, "filter bank summation" and performance bounds

Min-plus algebra

In such an algebra, one replaces the usual addition operator by the min operator and the usual multiplication operator by the addition operator .Denote by \oplus the min operator and \otimes the + operator.

ie. $A \oplus B = min\{A,B\}$ $A \otimes B = A + B$

Definition

- (Subadditive closure) For any $f \in F$, define f^* via the following recursive equation: $f^*(0)=0$, $f^*(t)=\min_{0\leq s\leq t}[f(t),\min[f^*(s)+f^*(t-s)]]$, t>0 we call f^* the subadditive closure of f.
- □ For the equation $B=A \oplus (B^*f)$, $B=A*f^*$ is the maximum solution

Definition

- For an increasing sequence $A\alpha\{A(t),t=0,1,...\}$ A(0)=0, we called A is f -upper constrained for some function f if $A(t2)-A(t1) \le f(t2-t1)$
- A sequence $f = \{f(t), t=0,1,2,....\} \in F(\text{resp.F})$ satisfies $f(0) \ge 0$ (resp. f(0) = 0) and $f(s) \le f(t)$ for all t.
 - (I)(min) the pointwise minimum of two sequence: $(f \oplus g)(t) = \min[f(t),g(t)]$
 - (II)(convolution) the convolution of two sequences under the (min,+)-algebra:

$$(f*g)(t)=\min [f(s)+g(t-s)],0\leq s\leq t$$

Suppose that A, $f \in F_0$.Construct a sequence B=A * f*,

i.e. $,B(t) = \min_{0 \le s \le t} [A(s) + f^*(t-s)]$

- (Traffic regulation) B is f^* -upper constrained and thus f-constrained
- (Optimality) For any f-upper constrained sequence \widetilde{B} that satisfies $\widetilde{B} \leq A$, one has $\widetilde{B} \leq B$
- (Conformity) A is f-upper constrained if and only if
 B=A.

(Maximal f-regulator)For $f \in \mathbb{F}_0$, the construction in $B(t)=\min_{0 \le s \le t} [A(s)+f^*(t-s)]$ is called the maximal f regulator (for the input A).

(Concatenation)A concatenation of the maximal f-regulator And the maximal f-regulator, independent of the order, is

the maximal f-regulator, where $f = f_1 * f_2$ is the convolution of f_1 and f_2 under the (min,+)-algebra, i.e.,

$$f(t) = \min_{0 \le s \le t} [f(s) + f(t-s)]$$

(Filter bank summation)A "filter bank summation" of the maximal the maximal f_1 -regulator and the maximal f_2 regulator is the maximal f-regulator with $f = f_1 \oplus f_2$, if $f_1^* \oplus f_2^*$ is subadditive.

We show that leaky buckets are indeed maximal regulator and they can be realized by a systematic approach under the (min,+)-algebra.

SANT DE

Traffic regulation for periodic constraint functions can be efficiently implemented by the FIR-IIR realization.

One possible application for such a regulator is traffic policing for video sequence, e.g. MPEG, where a certain periodic structure exists.

(f-server) A server guarantees service curve $f \in F$ for a Input sequence $A \in F$ if its output sequence satisfies $B \ge A * f$, i.e., $B(t) \ge \min [A(s) + f(t-s)]$, for all t, Such a $0 \le s \le t$ server is called an f-server for A.

(Window flow control)Let A be the input to a network and B be the output. Suppose that the network is a universal f-Server and that the network also enforces a window flow Control for the input A with the window size A of A in A

- Conclusions and future research
 In the following, we discuss possible extensions of the filtering theory.
 - (i)Matrix operations:one may consider square n×n matrices with entries in F. Such an extension could be used for modelling filtering with multiple inputs and outputs.
 - (ii)Transfer functions under the(min,+)-algebra:one may define the so called Z-transform under the (min,+)algebra by $F(z)=\min_{t}[f(t)+zt]$
 - (iii) Time varying filtering
 - (iv)Constrained filtering

SEMBOLY 1992