

LINEAR ALGEBRA

Spring Semester 2014 Prof. Dr. Po-Ning Chen http://shannon.cm.nctu.edu.tw/la.htm

Homework 11 of May 29, 2014

Deadline: June 05, 2014

Problem 1 (60%)

True or False

Answer whether the following statements are true (with reason) or false (with counterexample). Notably, what is required in the answer is not a rigorous proof but simply a reason if the statement is true.

- a) Suppose ${\bf x}$ is an eigenvector of A with eigenvalue $\lambda=1$, i.e., $A{\bf x}={\bf x}$. Then $\lambda=-1$ is also an eigenvalue with eigenvector $-{\bf x}$.
- b) It is possible to find a matrix A that has the diagonal elements being all zero, that is invertible, and that has only real eigenvalues.
- c) If the columns of $S_{n\times n}$ (whose columns are eigenvectors of A) are linearly independent, then
 - i) A is invertible.
 - ii) A is diagonalizable.
 - iii) S is invertible.
 - iv) S is diagonalizable.
- d) The following statements are about matrix symmetry.
 - i) If A has real eigenvalues and eigenvectors, then A is symmetric.
 - ii) If $A_{n\times n}$ has real eigenvalues and n orthogonal eigenvectors, then A is symmetric.
 - iii) If an invertible A is symmetric, then A^{-1} is also symmetric.
 - iv) If A is symmetric, then its eigen-matrix S is also symmetric.
- e) The following statements are about positive-definiteness.
 - i) If A is positive definite, then A^{-1} is also positive definite.
 - ii) If A is positive definite, then A is invertible.
 - iii) A projection matrix (i.e., $P^2 = P$) is positive definite.
 - iv) A diagonal matrix with positive diagonal entries is positive definite.
 - v) A symmetric matrix with a positive determinant is positive definite.
- f) The following statements are about matrix similarity.
 - i) A symmetric matrix cannot be similar to a non-symmetric matrix.
 - ii) An invertible matrix cannot be similar to a singular matrix.
 - iii) Matrix A cannot be similar to -A unless A = O, where O is the all-zero matrix.
 - iv) Matrix A cannot be similar to A + I.
 - v) If A is similar to B, then A^2 is similar to B^2 .

Problem 2 (10%)

Eigenvectors of Symmetric Matrices are Perpendicular

Here, we provide an alternative proof for the fact that eigenvectors are perpendicular to each other when A is symmetric.

- a) (5%) Suppose that $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = 0\mathbf{y}$, where $\lambda \neq 0$. Argue that \mathbf{x} is in the column space of A and that \mathbf{y} is in the nullspace of A. Why are \mathbf{x} and \mathbf{y} perpendicular?
- b) (5%) If $A\mathbf{z} = \beta \mathbf{z}$ for some $\beta \neq \lambda$, apply the argument in a) to $(A \beta I)\mathbf{x} = (\lambda \beta)\mathbf{x}$ and $(A \beta I)\mathbf{z} = 0\mathbf{z}$. Show that the eigenvectors with respect to distinct eigenvalues are perpendicular.

Problem 3 (20%)

Test for Positive Definiteness

a) (10%) Which of the following matrices only has positive eigenvalues? Do not compute the eigenvalues but use the test for positive definiteness. For those matrices that are not positive definite, find a vector \mathbf{x} such that $\mathbf{x}^T A \mathbf{x} \leq 0$.

$$\mathsf{A}_1 = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix}, \qquad \mathsf{A}_2 = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix}, \qquad \mathsf{A}_3 = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix}, \qquad \mathsf{A}_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}.$$

b) (10%) For what numbers of b and c are the below two matrices positive definite?

$$A = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 4 \\ 4 & c \end{bmatrix}.$$

Factor each matrix into LDL^T.

Problem 4 (10%)

Positive Definiteness

Show that if the columns of $A_{n\times n}$ are linearly independent and $C_{n\times n}$ is positive definite, then A^TCA is also positive definite.

Hint: $\mathbf{x}^T A^T C A \mathbf{x}$.