1. Give a BPSK-modulated communication system below, where \(T \) is the width of a channel symbol. Assume that \(\int_0^T \cos(4\pi f_c t) dt = 0 \).

(a) (6 pt) Show that the transmission power of the BPSK modulated (passband) signal is equal to \(\mathcal{E} \).

(Hint: The signal power of a transmitted signal \(s(t) \) is defined as \(\int_0^T s^2(t) dt \). From this case, you should learn that the SNR definition commonly used in the literature is based on a passband signal with power \(\mathcal{E} \), which is transmitted over the AWGN noise with \(N_0/2 \) power spectrum density.)

(b) (6 pt) As shown in the above figure, the one dimensional received vector \(r \) is equal to the (one-dimensional) signal vector \(s \) plus the noise sample. Suppose that the noise process \(n(t) \) is a zero-mean white Gaussian process with power spectrum density \(N_0/2 \). Prove that \(s = \pm \sqrt{\mathcal{E}} \) and \(n \) is Gaussian distributed with mean zero and variance \(N_0/2 \).

(c) (6 pt) Assume a uniform prior. Show that the minimum error probability attainable for the above receiver is \(\Phi(-\sqrt{2\gamma}) \), where \(\gamma = \mathcal{E}/N_0 \) and \(\Phi(.) \) represents the cdf of the standard normal distribution.

(Now you should know why we can directly write the input of the decision maker as \(r = \pm \sqrt{\mathcal{E}} + n \).)

Answer:

(a)

\[
\int_0^T \left[\pm \sqrt{\frac{2\mathcal{E}}{T}} \cos(2\pi f_c t) \right]^2 dt = \int_0^T \frac{2\mathcal{E}}{T} \cos^2(2\pi f_c t) dt
\]

\[
= \int_0^T \frac{2\mathcal{E}}{T} \left(\frac{1 + \cos(4\pi f_c t)}{2} \right) dt
\]

\[
= \int_0^T \frac{\mathcal{E}}{T} dt + \frac{\mathcal{E}}{T} \int_0^T \cos(4\pi f_c t) dt
\]

\[
= \mathcal{E}
\]
By definition, \(n = \int_0^T n(t) \sqrt{\frac{2}{T}} \cos(2\pi f c t) dt \) is Gaussian distributed. The proof of its mean being zero is easy; hence, we omit it. Its variance can be calculated below.

\[
E[n^2] = E \left[\int_0^T \int_0^T n(t) n(s) \sqrt{\frac{2}{T}} \cos(2\pi f c t) \cos(2\pi f c s) dt ds \right] \\
= \frac{2}{T} \int_0^T \int_0^T E[n(t)n(s)] \cos(2\pi f c t) \cos(2\pi f c s) dt ds \\
= \frac{2}{T} \int_0^T \int_0^T N_0 \delta(t-s) \cos(2\pi f c t) \cos(2\pi f c s) dt ds \\
= \frac{N_0}{T} \cos^2(2\pi f c t) dt \\
= \frac{N_0}{2}
\]

(c) See slide chap5a-5.

2. Suppose the signal in problem 1 is transmitted with propagation delay \(\tau \in (0,T) \). Assume that
\[
\int_0^T \cos(4\pi f c t) dt = \int_0^T \sin(4\pi f c t) dt = 0 .
\]

(a) (6 pt) Derive \(s \) and \(n \) under the fixed propagation delay \(\tau \). (Note that in your derivation, please denote \(\phi = -2\pi f c \tau \).)

(b) (6 pt) Assume a uniform prior. Derive the minimum error probability under the propagation delay \(\tau \in (0,T) \).

(c) (6 pt) Under the propagation delay \(\tau \in (0,T) \), determine the “enlarge-ratio” of the signal power to obtain the same error probability as problem 1(c). (“Enlarge-ratio” = new power in 2(c) / \(E \) in problem 1.)

Answer:

(a)
\[
s(t) = \pm \sqrt{\frac{2E}{T}} g(t) \cos(2\pi f c t) \Rightarrow s(t-\tau) = \pm \sqrt{\frac{2E}{T}} g(t-\tau) \cos(2\pi f c t + \phi)
\]

Hence,
The derivation of \(n \) is the same as that in problem 1.

(b) The error probability is
\[
\Phi \left(\left[\frac{T - \tau}{T} \right] \cdot \left| \cos(\phi) \right| \cdot \sqrt{2} \gamma \right),
\]
where \(\gamma = \mathcal{E} / N_0 \) and \(\Phi(\cdot) \) represents the cdf of the standard normal distribution.

(c) Let \(\mathcal{E}' \) be the new signal power. Then apparently, \(\mathcal{E}'/\mathcal{E} = \frac{T}{(T - \tau) \cos(\phi)} \).

3. (6 pt) Characterize the possible behavior of optimal error probability for \(M \)-ary orthogonal signal, as \(M \) tends to infinity, if the signal to noise ratio per information bit is smaller than the Shannon limit –1.6dB.
Answer: If the signal to noise ratio per information bit is smaller than the Shannon limit –1.6dB, the optimal error probability for \(M \)-ary orthogonal signal, as \(M \) tends to infinity, is bounded away from zero.
In other words, there exists an universal (in \(M \)) non-negative lower bound for the error probability of \(M \)-ary orthogonal signal.

4. (16 pt) Suppose the received lowpass equivalent signal, due to propagation delay, is of the form
\[
r_j(t) = e^{-j\phi} \cdot I \cdot g(t - \tau) + z(t) = s_j(t; \phi, \tau) + z(t),
\]
where \(I \) is either +1 or –1, the distribution of \(r_j(t) \) given \(\phi \) and \(\tau \) is
\[
p(r_j(t) | \phi, \tau) = \left(\frac{1}{\sqrt{2\pi N_0}} \right)^{2N} \exp \left\{ -\frac{1}{2} \left[(r_j(t) - s_j(t; \phi, \tau))^2 / N_0 \right] \right\},
\]
and the observation interval \(T_0 = T \). Suppose that \(g(t) \) equals one for \(0 \leq t < T \), and zero, otherwise. Find the decision directed maximum-likelihood estimator of \(\phi \) and \(\tau \) based on a specific received value \(r_j(t) = 1 + j \).
Answer:
\[
(\hat{\phi}_{ML}, \hat{\tau}_{ML}) = \arg \min_{\phi, \tau} \int_0^T \left[r_j(t) - s_j(t; \phi, \tau) \right] \left[r_j(t) - s_j(t; \phi, \tau) \right]^* dt / N_0,
\]
\[
= \arg \min_{\phi, \tau} \int_0^T \left\{ r_j(t)^2 + I^2 g(t - \tau) - r_j^* (t) e^{-j\phi} g(t - \tau) - r_j(t) e^{j\phi} g(t - \tau) \right\} dt
\]
\[
= \arg \min_{\phi, \tau} \int_0^T \left(\left(r_j(t)^2 + g(t - \tau) - 2I \cdot g(t - \tau) \Re \{ r_j^* (t) e^{-j\phi} \} \right)^2 \right) dt
\]
\[
= \arg \min_{\phi, \tau} \int_0^T \left(\left(r_j(t)^2 + g(t - \tau) - 2I \cdot g(t - \tau) \Re \{ (1 - j)e^{-j\phi} \} \right)^2 \right) dt
\]
\[
= \arg \min_{\phi, \tau} \left[(1 - 2I[\cos(\phi) - \sin(\phi)])^T g(t - \tau) dt \right)
\]
\[
= \arg \min_{\phi, \tau} \left[(1 - 2I[\cos(\phi) - \sin(\phi)]) (T - |\tau|) \cdot 1(-T < \tau < T),
\]
where \(\mathbf{1}(\cdot) \) is the indicator function. By taking the derivative of the above minimizing quantity with respect to \(\hat{\phi}_M \), it is either \(3\pi/4 \) or \(7\pi/4 \). Substitute these two values into the above minimizing quantity, we obtain that this quantity is either
\[
(\mathbf{1}(-T < \tau < T) \cdot (1 - 2\sqrt{2}I)(T - |\tau|)) \cdot \mathbf{1}(-T < \tau < T) \cdot 1
\]
or
\[
(\mathbf{1}(-T < \tau < T) \cdot (1 + 2\sqrt{2}I)(T - |\tau|)) \cdot \mathbf{1}(-T < \tau < T) \cdot 1
\]. Hence,
\[
\hat{\phi}_M = \begin{cases}
3\pi / 4, & I = +1; \\
7\pi / 4, & I = -1.
\end{cases}
\]
Also, no matter what \(I \) is, \(\hat{\tau}_M = 0. \) (From this result, you learn that \(\hat{\phi}_M \) does not necessarily equal \(-2\pi\hat{\tau}_M \); even if both are ML estimates.)

5. (12 pt) Suppose that the noise-free relation between the (lowpass equivalent) channel output \(r_i(t) \) and the (lowpass equivalent) channel input \(s_i(t) \) is
\[
r_i(t) = \int_{-\infty}^{\infty} \alpha(\tau; t)s_i(t - \tau) e^{-j2\pi\tau t} d\tau.
\]
Also, we know that the channel output and the channel input can be characterized by “convolution” operation as:
\[
r_i(t) = \int_{-\infty}^{\infty} c_j(\tau; t) s_i(t - \tau) d\tau
\]
where \(c_j(\tau; t) \) is the channel impulse response. By comparing these two formulas, express or formulate the (lowpass equivalent) channel impulse response \(c_j(\tau; t) \) in terms of \(\alpha(\tau; t) \).

Answer:
Since \(r_i(t) = \int_{-\infty}^{\infty} \alpha(\tau; t)s_i(t - \tau) e^{-j2\pi\tau t} d\tau = \int_{-\infty}^{\infty} \alpha(\tau; t)e^{-j2\pi\tau t} j_i(t - \tau) d\tau \),

Therefore, \(c_j(\tau; t) = \alpha(\tau; t)e^{-j2\pi\tau t} \).

6. (12 pt) Suppose that for a direct sequence spread spectrum system, the transmitted codeword is \([c_0, c_1, c_2] \), and the PN sequence is \([b_0, b_1, b_2] \), where \(a_i \) and \(b_i \) are elements of \(\{0,1\} \). After performing the chip-wise XOR operation between \([c_0, c_1, c_2] \) and \([b_0, b_1, b_2] \), i.e., \(a_i = c_i \oplus b_i \) for \(0 \leq i \leq 2 \), the communication system antipodally sends out the resultant chip sequence with pulse shape \(g(t) \), where \(g(t) = 1 \) for \(0 \leq t < 2T_c \), and zero, otherwise (Note that the multiplicative constant 2 is not mis-printed; there is indeed a 2 before \(T_c \)). Also, \(T_c \) is the chip duration. Prove that the transmitted signal can be represented as
\[
s_i(t) = \sum_{i=0}^{2} (c_i - 1) w(t - iT_c) \quad \text{and} \quad w(t) = 1 \quad \text{for} \quad 0 \leq t < T_c.
\]

Answer: The transmitted symbol corresponding to \(i \)th interval is
\[
s_i(t) = (1 - 2a_i) g(t - iT_c)
\]
\[
= [1 - 2(b_i \oplus c_i)] g(t - iT_c)
\]
\[
= (1 - 2b_j)(1 - 2c_j) g(t - iT_c)
\]
\[
= (2b_j - 1)(2c_j - 1) g(t - iT_c)
\]
\[
= [(2b_j - 1) g(t - iT_c)] \times [(2c_j - 1) g(t - iT_c)]
\]
\[
= [(2b_j - 1) w(t - iT_c) + (2b_j - 1) w(t - (i + 1)T_c)] \times [(2c_j - 1) w(t - iT_c) + (2c_j - 1) w(t - (i + 1)T_c)]
\]
\[
= (2b_j - 1) w(t - iT_c)(2c_j - 1) w(t - iT_c) + (2b_j - 1) w(t - (i + 1)T_c)(2c_j - 1) w(t - iT_c)
\]
\[
+ (2b_j - 1) w(t - iT_c)(2c_j - 1) w(t - (i + 1)T_c) + (2b_j - 1) w(t - (i + 1)T_c)(2c_j - 1) w(t - iT_c)
\]
\[
= (2b_j - 1) w(t - iT_c)(2c_j - 1) w(t - iT_c) + (2b_j - 1) w(t - (i + 1)T_c)(2c_j - 1) w(t - (i + 1)T_c)
\]
\[
= p_i(t) c_i(t) + p_i(t - T_c) c_i(t - T_c)
\]
where \(p_i(t) = (2b_j - 1) w(t - iT_c) \) and \(c_i(t) = (2c_j - 1) w(t - iT_c) \). Hence,
7. (6 pt) Under the worst-case pulsed jammer, sort the following decoding/decision scheme in the order of descending cutoff rate:

1. Soft-decision with complete knowledge of jammer state information;
2. Hard-decision with complete knowledge of jammer state information;
3. Soft-decision without knowledge of jammer state information;
4. Hard-decision without knowledge of jammer state information.

Answer: (1) > (2) > (4) > (3).

8. (a) (6 pt) Suppose that the (lowpass equivalent) channel impulse response is \(c_i(\tau; t) = \alpha(\tau; t)e^{-j2\pi f_c \tau} \).

Assume that \(\alpha(\tau; t) \) is zero-mean, and WSS in \(t \). Let

\[
\phi_{\alpha}(\tau, \Delta t) = \frac{1}{2} E[\alpha^*(\tau; t)\alpha(\tau; t + \Delta t)] = \begin{cases} \frac{10^7}{10^{-7}} (10^{-7} - \tau) & \text{for } 0 \leq \tau \leq 100ns; \\ 0, & \text{otherwise} \end{cases}
\]

be the autocorrelation function of \(\alpha(\tau; t) \). Also, assume that \(\alpha(\tau; t_1) \) and \(\alpha(\tau; t_2) \) are uncorrelated whenever \(\tau \neq \overline{\tau} \). Find the autocorrelation function of the (complex-valued) \(c_i(\tau; t) \).

(Hint: \(\phi_{c_i}(\tau; \overline{\tau}; \Delta t) = \frac{1}{2} E[c_i^*(\tau; t)c_i(\overline{\tau}; t + \Delta t)] \))

(b) (6 pt) What is the delay spread of this (uncorrelated-scattering) multipath fading channel.

Answer:

\[
\phi_{c_i}(\tau; \overline{\tau}; \Delta t) = \frac{1}{2} E[c_i^*(\tau; t)c_i(\overline{\tau}; t + \Delta t)] = \frac{1}{2} E[\alpha^*(\tau; t)e^{-j2\pi f_c \tau} \times \alpha(\overline{\tau}; t + \Delta t)e^{-j2\pi f_c \tau}] = \frac{1}{2} E[\alpha^*(\tau; t)\alpha(\tau; t + \Delta t)]e^{-j2\pi f_c (\tau - \overline{\tau})} = \frac{1}{2} E[\alpha^*(\tau; t)\alpha(\tau; t + \Delta t)]\delta(\tau - \overline{\tau}) = \phi_{\alpha}(\tau; \Delta t) \times \delta(\tau - \overline{\tau}).
\]

When \(\Delta t = 0 \), \(\phi_{c_i}(\tau; \overline{\tau}; \Delta t = 0) = \phi_{\alpha}(\tau; \Delta t = 0) \times \delta(\tau - \overline{\tau}) \). Hence, the delay spread of this channel is 100ns.