Section 25

Convergence of Distributions

Po-Ning Chen, Professor
Institute of Communications Engineering
National Chiao Tung University
Hsin Chu, Taiwan 30010, R.O.C.
Convergence of distributions

Definition (convergence in distribution) Distribution function $F_n(\cdot)$ is said to converge weakly to distribution function F, if

$$\lim_{n \to \infty} F_n(x) = F(x),$$

for every continuity point x of $F(\cdot)$.

In notations, we write $F_n \Rightarrow F$.

Why the definition only require convergence at continuity point?

Answer: If not, there will be quite a few distributions do not converge.
Convergence of distributions

Example 14.4 Let X_1, X_2, \ldots be i.i.d.

\[
\Pr[X_n = 1] = \Pr[X_n = -1] = \frac{1}{2}.
\]

Then

\[
F_{(X_1 + \cdots + X_n)/n}(x) \Rightarrow \Delta(x) = \begin{cases} 0, & \text{if } x < 0; \\ 1, & \text{if } x \geq 0. \end{cases}
\]

By symmetry,

\[
\Pr \left[\frac{X_1 + \cdots + X_n}{n} > 0 \right] = \Pr \left[\frac{X_1 + \cdots + X_n}{n} < 0 \right] = 1 - \Pr \left[\frac{X_1 + \cdots + X_n}{n} = 0 \right].
\]

Accordingly,

\[
F_{(X_1 + \cdots + X_n)/n}(0) = \Pr \left[\frac{X_1 + \cdots + X_n}{n} \leq 0 \right] = \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} \left(\frac{2}{e} \right)^n < \frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} \left(1 + \frac{1}{12(n-1)} \right).
\]

\[
\Rightarrow 2^{-2k} \left(\frac{2k}{k} \right) \leq \frac{1}{\sqrt{k\pi}} \left(1 + \frac{1}{24k-1} \right)
\]

\[
\frac{1}{2} \cdot \frac{1}{\sqrt{2\pi}} \left(\frac{2}{e} \right)^n \rightarrow \frac{1}{2} \neq \Delta(0) = 1.
\]
Vague convergence

Definition (vague convergence) A sequence of measures \(\{\mu_n\}_{n=1}^{\infty} \) is said to converge vaguely to measure \(\mu \), if

\[
\mu_n(a, b) \to \mu(a, b),
\]

for every finite interval for which \(\mu\{a\} = \mu\{b\} = 0 \).

In notations, we write \(\mu_n \xrightarrow{v} \mu \).

Observation If \(\mu_n \) and \(\mu \) are both probability measure, then \(\mu_n \xrightarrow{v} \mu \) is equivalent to \(F_n \Rightarrow F \), where \(F_n(x) = \mu_n(-\infty, x] \) and \(F(x) = \mu(-\infty, x] \).

Example 25.1 (converge vaguely \(\not\Rightarrow \) converge in distribution)
\[
F_n(x) = I_{[n, \infty)}.
\]
Then \(F_n \xrightarrow{v} F \equiv 0 \)
but we cannot write \(F_n \Rightarrow F \), since \(\lim_{x \uparrow \infty} F(x) = 0 \).
Vague convergence

The condition “for every finite interval for which \(\mu\{a\} = \mu\{b\} = 0 \)” is essential for vague convergence.

Example 25.3

\(\mu_n \) places mass \(1/n \) at each point \(k/n \) for \(k = 0, 1, \ldots, n - 1 \).

Then \(F_n(x) = \mu_n(-\infty, x] = \begin{cases} 0, & \text{if } x < 0; \\ \frac{\lfloor nx \rfloor + 1}{n}, & \text{if } 0 \leq x < 1; \\ 1, & \text{if } x \geq 1. \end{cases} \)

Accordingly,

\(F_n(x) \Rightarrow F(x) = \begin{cases} 0, & \text{if } x < 0; \\ x, & \text{if } 0 \leq x < 1; \\ 1, & \text{if } x \geq 1. \end{cases} \)

So \(\mu_n \Rightarrow \mu \), where \(\mu \) is Lebesgue measure confined in \([0, 1)\).

Let \(\mathbb{Q} \) be the set of all rational numbers.

Then \(\mu_n(\mathbb{Q}) = 1 \) for every \(n \).

But \(\mu(\mathbb{Q}) = 0 \).

However, this does not violate \(\mu_n \Rightarrow \mu \).
Poisson approximation to the binomial

Theorem 23.2 $Z_{n,1}, Z_{n,2}, \ldots, Z_{n,r_n}$ are independent random variables. \Pr[Z_{n,k} = 1] = p_{n,k}$ and $\Pr[Z_{n,k} = 0] = 1 - p_{n,k}$. Then

\begin{align*}
(i) \quad & \lim_{n \to \infty} \sum_{k=1}^{r_n} p_{n,k} = \lambda > 0 \quad \Rightarrow \quad \Pr \left[\sum_{k=1}^{r_n} Z_{n,k} = i \right] \to e^{-\lambda} \frac{\lambda^i}{i!} \quad \text{for } i = 0, 1, 2, \ldots \\
(ii) \quad & \lim_{n \to \infty} \max_{1 \leq k \leq r_n} p_{n,k} = 0
\end{align*}

and

\begin{align*}
(i) \quad & \lim_{n \to \infty} \sum_{k=1}^{r_n} p_{n,k} = 0 \quad \Rightarrow \quad \Pr \left[\sum_{k=1}^{r_n} Z_{n,k} = i \right] \to \begin{cases} 1, & \text{if } i = 0; \\ 0, & \text{if } i = 1, 2, \ldots \end{cases} \\
(ii) \quad & \lim_{n \to \infty} \max_{1 \leq k \leq r_n} p_{n,k} = 0
\end{align*}

If $r_n = n$, then Theorem 23.2 reduces to Poisson approximation to the binomial.
Poisson approximation to the binomial

Example 25.2 (Poisson approximation to the binomial)
Take $p_{n,k} = \lambda/n$.

$$
\mu_n\{k\} = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$
for $0 \leq k \leq n$.

Then

$$
\mu_n \Rightarrow \text{Poisson}(\lambda).
$$

Example 25.4 $\mu_n\{x_n\} = 1$ and $\mu\{x\} = 1$.
Then

$$
\mu_n \Rightarrow \mu \text{ if, and only if } x_n \xrightarrow{n \to \infty} x.
$$

If $x_n > x$ for every n, then (at the discontinuity point x of $F(\cdot)$)

$$
F_n(x) = 0 \text{ for every } n, \text{ but } F(x) = 1.
$$
Uniform distribution modulo 1

Fix a sequence of real numbers x_1, x_2, \ldots.

Define a counting probability measure as:

$$
\mu_n(A) = \frac{\text{number of } " (x_n - \lfloor x_n \rfloor) \in A " \text{ in } x_1, \ldots, x_n }{n}.
$$

(If $x_i - \lfloor x_i \rfloor = x_j - \lfloor x_j \rfloor \in A$ for some $i \neq j$, then their probability masses add to $\mu_n(A)$.)

Definition (Uniformly distributed modulo 1 for a deterministic sequence) If μ_n, defined above, satisfies $\mu_n \Rightarrow \mu$, where μ is a Lebesgue measure restricted to the unit interval, then x_1, x_2, \ldots is said to uniformly distributed modulo 1.

Theorem 25.1 For any irrational number θ,

$$
\theta, 2\theta, 3\theta, 4\theta, \ldots,
$$

is uniformly distributed modulo 1.

Proof: Will be given in Section 26.

• It forms the basis for numerically generating a Lebesgue measure restricted to the unit interval.
Definition Let random variables X_n and X have distributions $F_n(\cdot)$ and $F(\cdot)$, respectively. Then X_n is said to *converge in distribution* or *converge in law* to X, if

$$F_n \Rightarrow F,$$

or equivalently,

$$\lim_{n \to \infty} \Pr[X_n \leq x] = \Pr[X \leq x]$$

for every x such that $\Pr[X = x] = 0$.
Convergence in distribution

Example 25.5 (also, Example 14.1) Let X_1, X_2, \ldots be i.i.d. with

$$\Pr[X_n \geq x] = \begin{cases} e^{-\alpha x}, & \text{if } x \geq 0; \\ 1, & \text{for } x < 0. \end{cases}$$

Then

$$\Pr \left[\max\{X_1, X_2, \ldots, X_n\} - \frac{1}{\alpha} \log(n) \leq x \right]$$

$$= \Pr \left[\left(X_1 \leq x + \frac{1}{\alpha} \log(n) \right) \land \cdots \land \left(X_n \leq x + \frac{1}{\alpha} \log(n) \right) \right]$$

$$= \begin{cases} (1 - e^{-(\alpha x + \log(n))})^n, & \text{if } \alpha x \geq -\log(n); \\ 0, & \text{if } \alpha x < -\log(n) \end{cases}$$

$$= \begin{cases} \left(1 - \frac{e^{-\alpha x}}{n}\right)^n, & \text{if } \alpha x \geq -\log(n); \\ 0, & \text{if } \alpha x < -\log(n) \end{cases}$$

$$\xrightarrow{n \to \infty} e^{-e^{-\alpha x}} = \Pr[X \leq x] \text{ for all } x \in \mathbb{R}.$$
\(X_n \xrightarrow{p} X \) implies \(X_n \Rightarrow X \)

Theorem \(X_n \xrightarrow{p} X \) implies \(X_n \Rightarrow X \).

Proof: \(X_n \xrightarrow{p} X \) means that

\[
\lim_{n \to \infty} \Pr[|X_n - X| > \varepsilon] = 0 \text{ for any positive } \varepsilon.
\]

Observe that

\[
\Pr[A \leq a] - \Pr[|A - B| > b] \leq \Pr[(A \leq a) \land (|A - B| > b)^c] = \Pr[(A \leq a) \land (|A - B| \leq b)] = \Pr[(A + b \leq a + b) \land (A - b \leq B \leq A + b)] \leq \Pr[B \leq a + b].
\]

\[
\Pr[X \leq x - \varepsilon] - \Pr[|X_n - X| > \varepsilon] \leq \Pr[X_n \leq (x - \varepsilon) + \varepsilon] = \Pr[X_n \leq x],
\]
and

\[
\Pr[X_n \leq x] - \Pr[|X_n - X| > \varepsilon] \leq \Pr[X \leq x + \varepsilon].
\]

Hence,

\[
\Pr[X \leq x - \varepsilon] - \Pr[|X_n - X| > \varepsilon] \leq \Pr[X_n \leq x] \leq \Pr[X \leq x + \varepsilon] + \Pr[|X_n - X| > \varepsilon],
\]
\(X_n \xrightarrow{p} X \) implies \(X_n \Rightarrow X \)

which implies that

\[
\Pr[X \leq x - \varepsilon] \leq \liminf_{n \to \infty} \Pr[X_n \leq x] \leq \limsup_{n \to \infty} \Pr[X_n \leq x] \leq \Pr[X \leq x + \varepsilon].
\]

Consequently, for every continuous point of \(\Pr[X \leq x] \) (i.e., \(\lim_{\varepsilon \downarrow 0} \Pr[X \leq x + \varepsilon] = \lim_{\varepsilon \downarrow 0} \Pr[X \leq x - \varepsilon] \)),

\[
\lim_{n \to \infty} \Pr[X_n \leq x] = \Pr[X \leq x].
\]
Counterexample for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$ 25-12

Counterexample $X \perp \perp Y$ and

$$\Pr[X = 0] = \Pr[X = 1] = \Pr[Y = 0] = \Pr[Y = 1] = \frac{1}{2}.$$

Let $X_n = Y$ for each n.

Then apparently, $X_n \Rightarrow X$.

However, for $0 < \varepsilon < 1$,

$$\Pr[|X_n - X| > \varepsilon] = \Pr[|Y - X| > \varepsilon]$$
$$= \Pr[X = 0 \land Y = 1] + \Pr[X = 1 \land Y = 0]$$
$$= \Pr[X = 0] \Pr[Y = 1] + \Pr[X = 1] \Pr[Y = 0]$$
$$= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}.$$

From the above, you may already get that it is really easy to construct a counterexample for $X_n \Rightarrow X$ implies $X_n \xrightarrow{p} X$. So a general condition for which $X_n \Rightarrow X$ implies $X_n \xrightarrow{p} X$ may be hard to create!
Counterexample for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$

Another note for counterexample construction for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$ is that:

- $X_n \xrightarrow{p} X$ requires that X_1, X_2, X_3, \ldots must be random variables defined on \textbf{the same} probability space.
- But $X_n \Rightarrow X$ allows X_1, X_2, X_3, \ldots to be defined over \textbf{distinct} probability space.

There is however an exception:

\textbf{Theorem} Suppose $\Pr[X = a] = 1$ and X_1, X_2, \ldots are random variables defined over the same probability space. Then

$$X_n \xrightarrow{p} X \text{ if, and only if, } X_n \Rightarrow X.$$

- Notable, since X is a degenerated random variable, $X_n \xrightarrow{p} X$ means that for some a,

$$\lim_{n \to \infty} \Pr[|X_n - a| \geq \varepsilon] = 0 \text{ for any } \varepsilon > 0.$$

However, the validity of above inequality does not require X_1, X_2, \ldots to be defined over \textbf{the same} probability space.
Counterexample for \(X_n \Rightarrow X \) implying \(X_n \overset{p}{\rightarrow} X \)

So we can rewrite the above theorem as:

Theorem Suppose \(\Pr[X = a] = 1 \). Then

\[
\lim_{n \rightarrow \infty} \Pr[|X_n - a| \geq \varepsilon] = 0 \text{ for any } \varepsilon > 0 \text{ if, and only if, } X_n \Rightarrow X.
\]
Properties regarding convergence in distribution

Theorem $X_n \Rightarrow X$ and $\delta_n \xrightarrow{n \to \infty} 0$ jointly imply that $\delta_n X_n \Rightarrow 0$.

Proof:

- For any $\eta > 0$ given, choose $x > 0$ such that
 \[\Pr[|X| \geq x] < \eta \quad \text{and} \quad \Pr[X = \pm x] = 0. \]
 Imagine that η small implies x large for general X.
 In case X is a degenerated random variable with $\Pr[X = x_0] = 1$, any $x > x_0$ will give $\Pr[|X| \geq x] = 0 < \eta$.

- For any $\varepsilon > 0$ given, choose N_0 such that
 \[\delta_n < \frac{x}{\varepsilon} \text{ for } n \geq N_0. \]

- Since $\Pr[X = \pm x] = 0$ and $X_n \Rightarrow X$,
 \[|\Pr[|X_n| \geq x] - \Pr[|X| \geq x]| \xrightarrow{n \to \infty} 0. \]
 Therefore, there exists N_1 such that for $n > N_1$,
 \[|\Pr[|X_n| \geq x] - \Pr[|X| \geq x]| < \eta. \]
Properties regarding convergence in distribution

• Then for $n > \max\{N_0, N_1\}$,

$$
\Pr[|\delta_n X_n| \geq \varepsilon] = \Pr[|\delta_n| \cdot |X_n| \geq \varepsilon] \leq \Pr\left[\frac{\varepsilon}{x} |X_n| \geq \varepsilon\right] = \Pr[|X_n| \geq x] \\
\leq \Pr[|X| \geq x] + \eta < 2\eta.
$$

Hence,

$$
\limsup_{n \to \infty} \Pr[|\delta_n X_n| \geq \varepsilon] < 2\eta.
$$

• As η can be chosen arbitrarily small, independent of ε,

$$
\limsup_{n \to \infty} \Pr[|\delta_n X_n| \geq \varepsilon] = 0.
$$
Properties regarding convergence in distribution

Theorem 25.4 If \(X_n \xrightarrow{} X \) and \(X_n - Y_n \xrightarrow{} 0 \), then \(Y_n \xrightarrow{} X \).

Proof: For any \(x \) and arbitrarily small (but carefully chosen) \(\varepsilon > 0 \) (such that \(\Pr[X = y'] = \Pr[X = y''] = 0 \)), let \(y' = x - \varepsilon \) and \(y'' = x + \varepsilon \). Observe that

\[
\Pr[X_n \leq y'] - \Pr[|X_n - Y_n| > \varepsilon] \leq \left(\Pr[Y_n \leq y' + \varepsilon] = \right) \Pr[Y_n \leq x],
\]

and

\[
\Pr[Y_n \leq x] - \Pr[|X_n - Y_n| > \varepsilon] \leq \left(\Pr[X_n \leq x + \varepsilon] = \right) \Pr[X_n \leq y''].
\]

Hence,

\[
\Pr[X_n \leq y'] - \Pr[|X_n - Y_n| > \varepsilon] \leq \Pr[Y_n \leq x] \leq \Pr[X_n \leq y''] + \Pr[|X_n - Y_n| > \varepsilon],
\]

which implies that

\[
\Pr[X \leq x - \varepsilon] \leq \liminf_{n \to \infty} \Pr[Y_n \leq x] \leq \limsup_{n \to \infty} \Pr[Y_n \leq x] \leq \Pr[X \leq x + \varepsilon].
\]

Hence, the desired \(Y_n \xrightarrow{} X \) is obtained. \(\square \)
Properties regarding convergence in distribution

Theorem 25.5 If

1. $X_{n,m} \xrightarrow{n \to \infty} X_m$,
2. $X_m \xrightarrow{m \to \infty} X$, and
3. $\lim_{m \to \infty} \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon] = 0$ for any positive ε,

then $Y_n \Rightarrow X$.

Proof:

- For any x, we can choose ε arbitrarily small such that
 \[
 \Pr[X = y'] = \Pr[X_1 = y'] = \Pr[X_2 = y'] = \cdots = 0
 \]
 and
 \[
 \Pr[X = y''] = \Pr[X_1 = y''] = \Pr[X_2 = y''] = \cdots = 0,
 \]
 where $y' = x - \varepsilon$ and $y'' = x + \varepsilon$.

- We can then derive
 \[
 \Pr[X_{n,m} \leq y'] - \Pr[|X_{n,m} - Y_n| > \varepsilon] \leq \Pr[Y_n \leq x] \leq \Pr[X_{n,m} \leq y''] + \Pr[|X_{n,m} - Y_n| > \varepsilon].
 \]
Properties regarding convergence in distribution

Hence,

\[\liminf_{n \to \infty} \left(\Pr[X_{n,m} \leq y'] - \Pr[|X_{n,m} - Y_n| > \varepsilon] \right) \]
\[\leq \liminf_{n \to \infty} \Pr[Y_n \leq x] \]
\[\leq \limsup_{n \to \infty} \Pr[Y_n \leq x] \]
\[\leq \limsup_{n \to \infty} \left(\Pr[X_{n,m} \leq y'''] + \Pr[|X_{n,m} - Y_n| > \varepsilon] \right) , \]

which gives:

\[\Pr[X_m \leq y'] - \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon] \]
\[\leq \liminf_{n \to \infty} \Pr[Y_n \leq x] \]
\[\leq \limsup_{n \to \infty} \Pr[Y_n \leq x] \]
\[\leq \Pr[X_m \leq y'''] + \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon]. \]

• Taking \(m \) to infinity in the above inequality, we obtain:

\[\Pr[X \leq y'] \leq \liminf_{n \to \infty} \Pr[Y_n \leq x] \leq \limsup_{n \to \infty} \Pr[Y_n \leq x] \leq \Pr[X \leq y'']. \]
Properties regarding convergence in distribution

- A random sequence cannot have two distinct weak limits.

Theorem Let F_n, F and G be cdfs of some random variables. If $F_n \Rightarrow F$ and $F_n \Rightarrow G$, then $F(x) = G(x)$ for every $x \in \mathbb{R}$.

Proof: By the definition of convergence in distribution, $F(x) = G(x)$ must coincides at every continuous points of $F(x)$ and $G(x)$. By definitions, cdfs must be right-continuous. So $F'(x)$ and $G'(x)$ coincides also at discontinuous points. \square
Theorem 25.6 (Skorohod’s theorem) Suppose μ_n and μ are probability measures on $(\mathbb{R}, \mathcal{B})$, and $\mu_n \Rightarrow \mu$. Then there exist random variables Y_n and Y such that:

1. they are both defined on common probability space (Ω, \mathcal{F}, P);
2. $\Pr[Y_n \leq y] = \mu_n(-\infty, y]$ for every y;
3. $\Pr[Y \leq y] = \mu(-\infty, y]$ for every y;
4. $\lim_{n \to \infty} Y_n(\omega) = Y(\omega)$ for every ω.

Implication: Again, cdfs are sufficient; we do not need to rely on the inherited probability space.
Fundamental theorems (without proofs)

Theorem (A simplified version of mapping theorem) Suppose that a real-valued function h is \mathcal{B}/\mathcal{B}-measurable, and the set \mathcal{D}_h of its discontinuities is \mathcal{B}-measurable. Then

\[X_n \Rightarrow X \text{ and } \Pr[X \in \mathcal{D}_h] = 0 \implies h(X_n) \Rightarrow h(X). \]

Theorem If $X_n \Rightarrow a$ and function h is continuous at a, then $h(X_n) \Rightarrow h(a)$.

Example $X_n \Rightarrow X$ and $h(x) = ax + b$ imply $aX_n + b \Rightarrow aX + b$.

Example Suppose $X_n \Rightarrow X$ and $h(x) = ax + b$ and $a_n \to a$ and $b_n \to b$. Then (by Theorem 25.4)

\[
\begin{align*}
(aX_n + b) - (a_nX_n + b_n) &= (a - a_n)X_n + (b - b_n) \Rightarrow 0 \\
(aX_n + b) &\Rightarrow aX + b
\end{align*}
\]

imply $a_nX_n + b_n \Rightarrow aX + b$.
Fundamental theorems (without proofs)

Theorem 25.8 (A rephrased version) The following two conditions are equivalent.

- \(F_n \Rightarrow F \);
- \(\lim_{n \to \infty} \int_{\mathbb{R}} f(x) dF_n(x) = \int_{\mathbb{R}} f(x) dF(x) \) for every bounded, continuous real function \(f \).

Counterexample

- \(X_n \) is uniformly distributed over \(\{0, 1/n, 2/n, \ldots, (n-1)/n\} \), and \(X \) is uniformly distributed over \([0, 1)\).
- \(F_n(x) = \text{Pr}[X_n \leq x] \) and \(F(x) = \text{Pr}[X \leq x] \).
- \(\mathcal{A} = \) set of all rational numbers in \([0, 1)\).
- \(f(x) = 1 \) if \(x \in \mathcal{A} \), and \(f(x) = 0 \), otherwise.
- Since \(f(\cdot) \) is not continuous (though bounded),

\[
1 = \int_{\mathbb{R}} f(x) dF_n(x) \not\Rightarrow \int_{\mathbb{R}} f(x) dF(x) = 0.
\]
Helly’s theorem

Theorem 25.9 (Helly’s theorem) For every sequence \(\{F_n\}_{n=1}^{\infty} \) of distribution functions, there exists a subsequence \(\{F_{n_k}\}_{k=1}^{\infty} \) and a non-decreasing, right-continuous function \(F \) (not necessarily a cdf) such that

\[
\lim_{k \to \infty} F_{n_k}(x) = F(x)
\]

for every continuous points of \(F \).
Helly’s theorem

Theorem (The diagonal method) Give a bounded sequence of real numbers:

\[
\begin{align*}
x_{1,1} & \quad x_{1,2} & \quad x_{1,3} & \quad \cdots \\
x_{2,1} & \quad x_{2,2} & \quad x_{2,3} & \quad \cdots \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots
\end{align*}
\]

There exists an increasing sequence \(n_1, n_2, \ldots \) such that the limit \(\lim_{k \to \infty} x_{m,n_k} \) exists for each \(m = 1, 2, 3, \ldots \).

Proof:

- For \(x_{1,1}, x_{1,2}, x_{1,3}, \ldots \), there exists \(n_{1,1}, n_{1,2}, n_{1,3}, \ldots \) such that \(\lim_{k \to \infty} x_{1,n_{1,k}} \) exists.
- For \(x_{2,n_{1,1}}, x_{2,n_{1,2}}, x_{2,n_{1,3}}, \ldots \), there exists \(n_{2,1}, n_{2,2}, n_{2,3}, \ldots \) such that \(\lim_{k \to \infty} x_{2,n_{2,k}} \) exists (and still, \(\lim_{k \to \infty} x_{1,n_{2,k}} \) exists).
- Repeat the process to obtain:

\[
\begin{align*}
n_{1,1} & \quad n_{1,2} & \quad n_{1,3} & \quad \cdots \\
n_{2,1} & \quad n_{2,2} & \quad n_{2,3} & \quad \cdots \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots
\end{align*}
\]

Since each row is a subsequence of the previous row in the above \(n \)-list, \(n_{k,k} \) is increasing in \(k \). Finally, \(n_{k,k}, n_{k+1,k+1}, n_{k+2,k+2}, \ldots \) satisfies that \(\lim_{k \to \infty} x_{m,n_{k,k}} \) exists. \(\square \).
Helly’s theorem

Proof of Helly’s theorem:

- List the two dimensional array of \(F_n(r) \) for \(r \) rational. Then by the diagonal method, there exists \(n_1, n_2, \ldots \) such that \(\lim_{k \to \infty} F_{n_k}(r) \) exists for every rational \(r \).

- Let \(G(r) = \lim_{k \to \infty} F_{n_k}(r) \) for every rational \(r \) (So for two rationals \(s < r \), \(G(s) \leq G(r) \)) and define

 \[
 F(x) = \inf \{ G(r) : r > x \text{ and } r \text{ rational} \}.
 \]

 Thus, \(F(x) \) is clearly non-decreasing, since taking infimum over a smaller set yields a larger value. (So for any \(r > x \), \(G(r) \geq F(x) \).)

- By definition of infimum, for a given \(\varepsilon > 0 \), there exists a rational \(r > x \) such that

 \[
 G(r) < F(x) + \varepsilon.
 \]

- (Base on the above \(r, x \) and \(\varepsilon \).) For any \(\mu \) satisfying \(x < x + \mu < r \), \(F(x) \leq F(x + \mu) \leq G(r) \) \((< F(x) + \varepsilon) \).

 So

 \[
 F(x) \leq \lim_{\mu \downarrow 0} F(x + \mu) < F(x) + \varepsilon.
 \]
Helly’s theorem

(The limit of \(\lim_{\mu \downarrow 0} F(x + \mu) \) must exist. Why?)

Since the above inequality is valid for any \(\varepsilon > 0 \),

\[
\lim_{\mu \downarrow 0} F(x + \mu) = F(x),
\]

which means that \(F(\cdot) \) is right-continuous.

• Finally, suppose that \(F(\cdot) \) is continuous at \(x \).

Then again, by definition of infimum, for a given \(\varepsilon > 0 \), there exists a rational \(r > x \) such that

\[
G(r) < F(x) + \varepsilon.
\]

Also, by continuity, for this \(\varepsilon \), there exists \(y < x \) such that

\[
F(x) - \varepsilon < F(y).
\]

Choose another rational \(s \) satisfying \(y < s < x \) \((< r)\). Apparently, \(F(y) \leq G(s) \) and \(G(s) \leq G(r) \).

Therefore, we have:

\[
F(x) - \varepsilon < G(s) \leq G(r) < F(x) + \varepsilon.
\]

On the other hand,

\[
F_n(s) \leq F_n(x) \leq F_n(r)
\]
Helly’s theorem

implies that

\[G(s) = \lim_{k \to \infty} F_{n_k}(s) \leq \liminf_{k \to \infty} F_{n_k}(x) \leq \limsup_{k \to \infty} F_{n_k}(x) \leq \lim_{k \to \infty} F_{n_k}(r) = G(r). \]

The above concludes to:

\[F(x) - \varepsilon \leq \liminf_{k \to \infty} F_{n_k}(x) \leq \limsup_{k \to \infty} F_{n_k}(x) \leq F(x) + \varepsilon. \]

The proof is completed by noting that \(\varepsilon \) can be made arbitrarily small. \(\Box \).

- In the above theorem, the limit \(F(\cdot) \) is not necessarily a cdf!

Example \(F_n(x) = 0 \) for \(x < n \) and \(F_n(x) = 1 \) for \(x \geq n \). Then

\[\lim_{n \to \infty} F_n(x) = 0 \]

for every \(x \in \mathbb{R} \).
Definition (tightness) A sequence of cdf's is said to be tight if for any $\varepsilon > 0$, there exist x and y such that

$$F_n(x) < \varepsilon \text{ and } F_n(y) > 1 - \varepsilon \text{ for all sufficiently large } n.$$

- It can be shown that the limit $F(\cdot)$ in Helly’s theorem satisfies $0 \leq F(x) \leq 1$.
- Also, $F(\cdot)$ is right-continuous and non-decreasing.
- So if $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$. Then $F(\cdot)$ becomes a cdf.
- Tightness is a condition to prevent the probability mass from escaping to infinity.
Theorem 25.10 (rephrased version) Tightness of \(\{F_{n_k}\}_{k=1}^{\infty} \) is a necessary and sufficient condition for the limit \(F(\cdot) \) in Helly’s theorem to be a cdf.

Proof:

1. **Sufficiency:** Suppose \(\{F_{n_k}(\cdot)\}_{k=1}^{\infty} \) is tight. Then for any \(\varepsilon > 0 \), we can find \(x \) and \(y \) such that

\[
F_{n_k}(x) < \varepsilon \quad \text{and} \quad F_{n_k}(y) > 1 - \varepsilon \quad \text{for all sufficiently large} \quad k.
\]

Hence,

\[
F(x) = \lim_{k \to \infty} F_{n_k}(x) \leq \varepsilon \quad \text{and} \quad F(y) = \lim_{k \to \infty} F_{n_k}(y) \geq 1 - \varepsilon,
\]

which implies

\[
\lim_{x \downarrow -\infty} F(x) \leq \varepsilon \quad \text{and} \quad \lim_{y \uparrow \infty} F(y) \geq 1 - \varepsilon.
\]

The proof is completed by noting that \(\varepsilon \) can be made arbitrarily small.
2. **Necessity:** Suppose that $F(\cdot)$ is a cdf. Then for any $\varepsilon > 0$, there exist x and y such that

$$F(x) < \varepsilon \text{ and } F(y) > 1 - \varepsilon.$$

In other words,

$$\lim_{k \to \infty} F_{n_k}(x) < \varepsilon \text{ and } \lim_{k \to \infty} F_{n_k}(y) > 1 - \varepsilon.$$

Therefore, for all sufficiently large k,

$$F_{n_k}(x) < \varepsilon \text{ and } F_{n_k}(y) > 1 - \varepsilon.$$

\[\square \]

To let you have some feeling on **tightness**, we provide the next observation.

Observation Suppose $F_n(\cdot)$ is a degenerated cdf at x_n. Then $\{F_n\}_{n=1}^\infty$ is tight if, and only if, $\{x_n\}_{n=1}^\infty$ is bounded.

- **Final remark on tightness:** *Tightness* on sequences of probability measures is similar to *boundedness* on sequences of real numbers.
Example 25.10 Let \(\{X_n\}_{n=1}^{\infty} \) be a sequence of normal distribution with mean \(m_n \) and variance \(\sigma_n^2 \).

- If \(\{m_n\}_{n=1}^{\infty} \) and \(\{\sigma_n\}_{n=1}^{\infty} \) are bounded, then \(\{X_n\}_{n=1}^{\infty} \) is tight.

Proof: By Markov’s inequality,

\[
\Pr[|X_n| > a] \leq \frac{E[X_n^2]}{a^2} = \frac{\sigma_n^2 + m_n^2}{a^2} \leq \frac{\sigma_{\max}^2 + m_{\max}^2}{a^2}.
\]

So for any \(\varepsilon > 0 \),

\[
x = -\sqrt{\frac{\sigma_{\max}^2 + m_{\max}^2}{\varepsilon}}
\]

and

\[
y = \sqrt{\frac{\sigma_{\max}^2 + m_{\max}^2}{\varepsilon}}
\]

satisfy the tightness condition. \(\Box \).
Example for tightness vs boundedness

Example 25.10 (cont.)

- If \(\{m_n\}_{n=1}^{\infty} \) is unbounded, then \(\{X_n\}_{n=1}^{\infty} \) is not tight!

 \textit{Proof:} This can be easily seen from \(\Pr[X_n \geq m_n] = \Pr[X_n \leq m_n] = 1/2. \) \(\square \)
Moment and in-distribution convergence

- Convergence in mean implies convergence in distribution. But the reverse is not necessarily true.
- However, we can still say “something” in the reverse direction.

Theorem 25.11 If $X_n \Rightarrow X$, then

$$E[|X|] \leq \liminf_{n \to \infty} E[|X_n|].$$

Lemma (Fatou’s lemma) If $\{f_n(\cdot)\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions, and $\lim_{n \to \infty} f_n(x) = f(x)$ for every $x \in \mathcal{E}$ except on a set of Lebesgue measure zero, then

$$\int_{\mathcal{E}} f(x) dx \leq \liminf_{n \to \infty} \int_{\mathcal{E}} f_n(x) dx.$$

Proof: By Fatou’s lemma,

$$\int_{\mathbb{R}} |x|dF(x) \leq \liminf_{n \to \infty} \int_{\mathbb{R}} |x|dF_n(x).$$
Moment and in-distribution convergence

Definition (Integrability) A random variable X is integrable, if

$$\lim_{\alpha \to \infty} \int_{|x| \geq \alpha} |x|dF_X(x) = 0.$$

Lemma A random variable X is integrable if, and only if, $E[|X|] < \infty$.

Proof:

\[
\lim_{\alpha \to \infty} \int_{|x| \geq \alpha} |x|dF_X(x) = 0
\]

\[
\Rightarrow (\exists \alpha') \int_{|x| \geq \alpha'} |x|dF_X(x) < \varepsilon \text{ for a given } \varepsilon > 0
\]

\[
\Rightarrow E[|X|] = \int_{|x| < \alpha'} |x|dF_X(x) + \int_{|x| \geq \alpha'} |x|dF_X(x) \leq \alpha' + \varepsilon < \infty.
\]

and

\[
\lim_{\alpha \to \infty} \int_{|x| < \alpha} |x|dF_X(x) = \int_{\mathbb{R}} |x|dF_X(x) < \infty
\]

\[
\Rightarrow \lim_{\alpha \to \infty} \int_{|x| \geq \alpha} |x|dF_X(x) = \lim_{\alpha \to \infty} \left(E[|X|] - \int_{|x| < \alpha} |x|dF_X(x) \right) = 0.
\]

• Hence, integrability can also be defined directly through $E[|X|] < \infty$.

Moment and in-distribution convergence

Definition (Uniform integrability) A sequence of random variables \(\{X_n\}_{n=1}^{\infty} \) (defined over the same probability space) is *uniformly integrable* if

\[
\lim_{\alpha \to \infty} \sup_{n \geq 1} \int_{\{ |x| \geq \alpha \}} |x|dF_{X_n}(x) = 0.
\]

- The necessity of the condition of defining over the same probability space \((\Omega, \mathcal{F}, P)\) is more obvious, if we write the above equation as:

\[
\lim_{\alpha \to \infty} \sup_{n \geq 1} \int_{\{ \omega \in \Omega : |x_n(\omega)| \geq \alpha \}} |x_n(\omega)|dP(\omega) = 0.
\]

- However, I personally think that the condition of defining over the same probability space can be relaxed since in-distribution convergence does not require this condition.
Moment and in-distribution convergence

Lemma Uniform integrability implies that

\[
\sup_{n \geq 1} E[|X_n|] < \infty.
\]

Proof:

\[
\lim_{\alpha \to \infty} \sup_{n \geq 1} \int_{|x| \geq \alpha} |x| dF_{X_n}(x) = 0
\]

\[\Rightarrow (\exists \alpha') \sup_{n \geq 1} \int_{|x| \geq \alpha'} |x| dF_{X_n}(x) < \varepsilon \text{ for a given } \varepsilon > 0\]

\[\Rightarrow \sup_{n \geq 1} E[|X_n|] = \sup_{n \geq 1} \left(\int_{|x| < \alpha'} |x| dF_{X_n}(x) + \int_{|x| \geq \alpha'} |x| dF_{X_n}(x) \right) \leq \alpha' + \varepsilon < \infty.\]

\[\square.\]

- Although the converse statement for **integrability** holds, the converse statement for the **uniform integrability** is not necessarily valid.
Lemma

\[\sup_{n \geq 1} E[|X_n|] < \infty \]

does not necessarily imply uniform integrability.

Proof: Let \(\text{Pr}[X_n = 0] = 1 - (1/n) \) and \(\text{Pr}[X_n = n] = 1/n \).

Then, \(E[|X_n|] = 1 \) for every \(n \), but

\[\int_{|x| > \alpha} |x| dF_n(x) = \begin{cases}
0, & n < \alpha; \\
1, & n > \alpha.
\end{cases} \]

We therefore have

\[\sup_{n \geq 1} E[|X_n|] = 1 < \infty \quad \text{but} \quad \lim_{\alpha \to \infty} \sup_{n \geq 1} \int_{|x| > \alpha} |x| dF_n(x) = 1 \not\to 0. \]
Moment and in-distribution convergence

Remark:

• In the above example, we actually have

\[E[|X_n|] = \int_{|x|>\alpha} |x|dF_n(x) \quad \text{for } n > \alpha. \]

Hence, the uniform “boundedness” of \(E[|X_n|] \) for \(n > \alpha \) (i.e., \(\sup_{n \geq \alpha} E[|X_n|] < \infty \)) does not imply the uniform “close-to-zero” of \(E[|X_n|] \) (i.e.,

\[\sup_{n \geq \alpha} E[|X_n|] \to 0 \quad \text{as } \alpha \to \infty. \]

•

\[\sup_{n \geq 1} E[|X_n|] < \infty \]

does not necessarily imply uniform integrability.

But

\[\sup_{n \geq 1} E[|X_n|^{1+\varepsilon}] < \infty \]

does. (This can be proved by the generalized Markov inequality introduced in the next slide with \(b = 1 \) and \(k = \varepsilon \).)
Generalization of Markov’s inequality

Markov’s inequality

\[\int_{[|x| \geq \alpha]} dF_X(x) \leq \frac{1}{\alpha^k} E[|X|^k]. \]

Generalized Markov’s inequality

\[\int_{[|x| \geq \alpha]} |x|^b dF_X(x) \leq \frac{1}{\alpha^k} E[|X|^{b+k}]. \]

Proof:

\[E[|X|^{b+k}] = \int_{\mathbb{R}} |x|^{b+k} dF_X(x) \]
\[\geq \int_{[|x| \geq \alpha]} |x|^{b+k} dF_X(x) \]
\[\geq \alpha^k \int_{[|x| \geq \alpha]} |x|^b dF_X(x). \]
More on uniform integrability

Lemma If there exists an integrable random variable Z with

$$\Pr[|X_n| \geq t] \leq \Pr[|Z| \geq t] \text{ for all } t \text{ and } n,$$

then $\{X_n\}_{n=1}^\infty$ is uniformly integrable.

Proof:

$$\int_{[x \geq \alpha]} x dF_X(x) = \alpha \Pr[X \geq \alpha] + \int_{\alpha}^{\infty} \Pr[X \geq t] dt.$$

$$\int_{|[x| \geq \alpha]} |x| dF_{X_n}(x) = \alpha \Pr[|X_n| \geq \alpha] + \int_{\alpha}^{\infty} \Pr[|X_n| \geq t] dt$$

$$\leq \alpha \Pr[|Z| \geq \alpha] + \int_{\alpha}^{\infty} \Pr[|Z| \geq t] dt$$

$$= \int_{|[z| \geq \alpha]} |z| dF_Z(z).$$
Theorem 25.12 If $X_n \Rightarrow X$ and $\{X_n\}_{n=1}^{\infty}$ uniformly integrable, then X is integrable, and $E[X_n] \xrightarrow{n \to \infty} E[X]$.

Proof:

- By uniform integrability,

 $$E[|X|] \leq \liminf_{n \to \infty} E[|X_n|] \leq \sup_{n \geq 1} E[|X_n|] < \infty.$$

 Hence, X is integrable.

- Define $Y_n = X_n I_{|X_n| < \alpha}$ and $Y = X I_{|X| < \alpha}$.
 Observe that

 \[
 \begin{align*}
 Y_n^+ &\Rightarrow Y^+ \\
 \alpha - Y_n^- &\Rightarrow \alpha - Y^+
 \end{align*}
 \]

 imply

 \[
 \begin{align*}
 E[Y^+] &\leq \liminf_{n \to \infty} E[Y_n^+] \\
 \alpha - E[Y^+] &\leq \liminf_{n \to \infty} (\alpha - E[Y_n^+]) = \alpha - \limsup_{n \to \infty} E[Y_n^+].
 \end{align*}
 \]

 Hence, $\lim_{n \to \infty} E[Y_n^+] = E[Y^+]$.

 Similarly, we have $\lim_{n \to \infty} E[Y_n^-] = E[Y^-]$.

 Accordingly, $\lim_{n \to \infty} E[Y_n] = E[Y]$.

Moment and in-distribution convergence

\[\left| \int_{\mathbb{R}} xdF_{X_n}(x) - \int_{\mathbb{R}} xdF_X(x) \right| = \left| \int_{|x|<\alpha} xdF_{X_n}(x) - \int_{|x|<\alpha} xdF_X(x) + \int_{|x|\geq\alpha} xdF_{X_n}(x) - \int_{|x|\geq\alpha} xdF_X(x) \right| \\
= \left| \int_{\mathbb{R}} ydF_{Y_n}(y) - \int_{\mathbb{R}} ydF_Y(y) + \int_{|x|\geq\alpha} xdF_{X_n}(x) - \int_{|x|\geq\alpha} xdF_X(x) \right| \\
\leq \left| \int_{\mathbb{R}} ydF_{Y_n}(y) - \int_{\mathbb{R}} ydF_Y(y) \right| + \sup_{n \geq 1} \int_{|x|\geq\alpha} |x|dF_{X_n}(x) + \int_{|x|\geq\alpha} |x|dF_X(x) \\
\]

Therefore,

\[\limsup_{n \to \infty} \left| \int_{\mathbb{R}} xdF_{X_n}(x) - \int_{\mathbb{R}} xdF_X(x) \right| \leq \sup_{n \geq 1} \int_{|x|\geq\alpha} |x|dF_{X_n}(x) + \int_{|x|\geq\alpha} |x|dF_X(x). \]

The proof is completed by taking \(\alpha \) to the infinity. \(\Box \)
Corollary Let r be a positive integer. If $X_n \Rightarrow X$ and $\sup_{n \geq 1} E[|X_n|^{r+\varepsilon}] < \infty$, where $\varepsilon > 0$, then

$$|X|^r$$ integrable, and $E[|X_n|^r] \xrightarrow{n \to \infty} E[|X|^r]$.

Proof: This is a direct consequence of Theorem 25.12 by noting that:

1. $X_n \Rightarrow X$ implies $|X_n|^r \Rightarrow |X|^r$, and

2. $\sup_{n \geq 1} E[|X_n|^{r+\varepsilon}] < \infty$ implies $\{|X_n|^r\}_{n=1}^{\infty}$ is uniformly integrable.